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Abstract

The application of network-oriented modeling for radiating electromagnetic struc-
tures is investigated. Network methods are applied to the field problem using the seg-
mentation technique and by specifying canonical Foster representations as compact
models of reciprocal linear lossless electromagnetic structures. Connection between
different subdomains is obtained via connection circuits exhibiting only ideal trans-
formers. In the case of radiating structures, the complete structure is embedded into
a sphere and the field outside the sphere is expanded into orthogonal spherical TM-
and TE- waves. For each radiation mode a Cauer canonic circuit representation is
given.

1 Introduction

The application of network-oriented methods applied to electromagnetic field problems can improve the
problem formulation and also contribute to the solution methodology [1-3]. In network theory systematic
approaches for circuit analysis are based on the separation of the circuit into the connection circuit and the
circuit elements [4]. The connection circuit represents the topological structure of the circuit and contains
only the connections, including ideal transformers. In the connection circuit neither energy storage nor
energy dissipation occurs. The connection circuit, governed by Tellegen’s theorem [5-7] and Kirchhoff
laws [4], connects the circuit elements that may be one-ports or multiports. Electromagnetic field theory
and network theory are linked via method of moments [8]. In method of moments the electromagnetic
field functions are represented by series expansions into basis functions. The linear systems of equations
relating the expansion coefficients may be interpreted as linear circuit equations. If a rational expansion
of the circuit equations exists lumped element equivalent circuits may be specified.

In analogy with network theory, individual subdomains are characterized via subdomain relations, ob-
tained either analytically or numerically, and described in a unified format by using a generalized network
formulation [3]. Arcioni et.al. have modeled waveguide circuits by segmenting the circuits into elementary
blocks and representing these blocks by the Y-matrices [9,10]. After segmentation of a distributed circuit,
each subdomain can be described either via its Green’s function or numerically. For any linear reciprocal
lossless distributed circuit equivalent canonic Foster realizations exist [11,12]. If we are subdividing an
electromagnetic structure into subregions, equivalent Foster representations may be given for the subdo-
main circuits. The equivalent subdomain circuits are embedded into a connection circuit representing the
boundary surfaces. For lossy circuits extended Foster matrices may be introduced [13-15]. The Foster
representations either may obtained via analytic solution of the field problem or by pole extraction from
the numerical solution of the field problem.



In this contribution we give an overview over network methods in electromagnetic theory. Throughout the
paper exterior differential forrm notation is used [16]. In section 2 we give a brief summary of differential
form representation of Maxwell’s equations. In section 3 the Tellegen’s Theorem is revisited from a field
theoretic point of view. We discuss the generation of the connection network and the relative canonical
form. In section 4 the characterization of distributed circuits and subcircuits via Green’s functions and the
relation of the canonical Foster equivalent circuit to the Green’s function representation are discussed. In
section 5 the Cauer canonic realization of radiation modes is presented. The complete equivalent circuit
representation of radiating structures is discussed in section 6.

2 Maxwell’s Equations

Maxwell’s equations in differential form representation are

dH = %D +J, Ampére’s law (1)
dé = —%87 Faraday’s law (2)
dB=0, Magnetic flux continuity (3)
dD=Q. Gauss’ law (4)

where the polar vectors of the electric and magnetic fields are represented by the one-forms

E=E;(z,y,2t)dx + Ey(z,y,2,t)dy + E,(x,y, 2, t) dz, (5)
H = Hy(z,y,zt)de + Hy(x,y, z,t)dy + H.(x,y, z,t) dz. (6)

and the the axial vectors of the electric and magnetic fields and the electric current are represented by
the two-forms

D=DydyA dz+ Dydz A do+ D.dz A dy, (7
B=B,dyA dz+ B,dz A dz + B, dz A dy, (8)
J=JydyNdz+ Jydz A de+ J.dz A dy. (9)

The electric charge is represented by the three-form

Q=pdeAdyA dz. (10)
The exterior derivative dif of an exterior differential form U by
ou
dU = dae; AN —. 11

For the exterior differential we have to consider the following rules:
dU+V)=dU+ dV, (12)
AdUANV) = dUAV + (1)CsDY A AV, (13)
where the degree of the differential form U is degld = p if U is a p-form.

The Stokes’ theorem relates the integration of a p-form U over the closed p-dimensional boundary 0V of
an p + 1-dimensional volume V' to the volume integral of U over V via

fou=[ au. (14)



3 The Tellegen’s Theorem and the Connection Network

3.1 Field Theoretic Formulation of Tellegen’s Theorem

Complex electromagnetic structures may be subdivided into spatial subdomains. Comparing a distributed
circuit represented by an electromagnetic structure with a lumped element circuit represented by a
network, the spatial subdomains may be considered as the circuit elements whereas the complete set
of boundary surfaces separating the subdomains corresponds to the connection circuit [3]. Fig. 1 shows
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Figure 1: Segmentation of a closed structure.

the segmentation of an electromagnetic structure into different regions R; separated by boundaries Bjg.
The dashed curves denote the boundaries and shadowed regions denote perfect electric conductors or
perfect magnetic conductors respectively. The nonshadowed regions may contain any electromagnetic
substructure. In our network analogy the two-dimensional manifold of all boundary surfaces By, represents
the connection circuit whereas the subdomains R; are representing the circuit elements.

The tangential electric and magnetic fields on the boundary surface of a subdomain are related via
Green’s functions [17]. These Green’s functions can be seen in analogy to the Foster representation of the

corresponding reactive network.

We can establish a field representation of the Tellegen’s theorem relating the tangental electric and
magnetic fields on the two-dimensional manifolds of boundaries By, [7]. Expanding the tangential electric
and magnetic fields on the boundaries again into basis functions allows to give an equivalent circuit
representation for the boundary surfaces. The equivalent circuit of the boundary surfaces is a connection
circuit exhibiting only connections and ideal transformers.

Tellegen’s theorem states fundamental relations between voltages and currents in a network and is of
considerable versatility and generality in network theory [5-7]. A noticeable property of this theorem is
that it is only based on Kirchhoff’s current and voltage laws, i.e. on topological relationships, and that it
is independent from the constitutive laws of the network. The same reasoning that yields from Kirchhoff’s
laws to Tellegen’s theorem allows to directly derive a field form of Tellegen’s theorem from Maxwell’s
equations [7].

In order to derive Tellegen’s theorem for partitioned electromagnetic structures let us consider two elec-
tromagnetic structures based on the same partition by equal boundary surfaces. The subdomains of
either electromagnetic structure however may be filled with different materials. The connection network
is established via the relations of the tangential field components on both sides of the boundaries. Since
the connection network exhibits zero volume no field energy is stored therein and no power loss occurs

therein.



Starting directly from Maxwell’s equations we may derive for a closed volume R with boundary surface
OR the following relation:

5’(:1; Y ANH (1) = —f &, ') AT (z,t") (15)

D// t// B//( t”)
/5 t” /H at” :

The prime ' and double prime " denote the case of a different choice of sources and a different choice
materials filling the subdomains. Furthermore also the time argument may be different in both cases.

For volumes R,, of zero measure or free of field the right side of this equation vanishes. Considering
an electromagnetic structure as shown in fig. 1, we perform the integration over the boundaries of all
subregions not filled with ideal electric or magnetic conductors respectively. The integration over both
sides of a boundary yields zero contribution to the integrals on the right side of (15). Also the integration
over finite volumes filled with ideal electric or magnetic conductors gives no contribution to these integrals.
We obtain the field form of Tellegen’s theorem:

f{. E'x, " YNH" (z,t")=0. (16)
OR

3.2 The discretized connection network

We now consider the fields as expanded on finite orthonormal basis function sets; the assumption of
orthonormal basis is not necessary, and is introduced to simplify notation. We consider a set of expansion
functions of dimension N, on side a and a basis of dimension Ng on side f3.

Subject to the above assumption, we may write the transverse field expansions as

ZV“ o Zvﬁeﬁ (17)

i = Zfah“ H =3 I0h(z). (18)

where we have used the tilde, as in [1], in order to denote fields expressed by finite expansions. The
vector fields e, (x) and hé(x), £ = a, 3, are the selected basis functions for electric and magnetic fields.
Moreover, V¢ and IS, £ = a, 3, denote the field amplitudes of the electric and magnetic fields, respectively.
They are conveniently grouped into the following arrays for the expansions coefficients of the electric field
(voltages),

ve=[veovg o vR ] ve=[vi v o Vg (19)
and for the magnetic fields (currents),
=y 15 I8 =[5 .. R (20)
leading compactly to
ve I
v-[] - ) 2



3.3 Tellegen’s Theorem for discretized fields

We start by expanding the fields in (16) into basis functions:

No Ng
Ew, t') ANH (x,t") = ZZK%(t’);ﬁ”(t”)/aRe%/\hﬁ (22)

OR n m
(23)
N Ng
DAY NS
e oR
By introducing the matrix A with elements
A= [ e nng, 24
OR
with £ standing for either « or 3, the general form of Tellegen’s theorem is
vI)AL'W) = 0. (25)

In general it is convenient to consider orthogonal electric and magnetic field expansions; when this is not
the case a suitable orthogonalization process can be carried out providing an orthogonalized basis. In
that case the Tellegen’s theorem takes the standard form

v ') =o. (26)

where V (t) and I(t) denote the voltage and current vectors of the connection circuit. The prime ' and
double prime ” again denote different circuit elements and different times in both cases. It is only required
that the topological structure of the connection circuit remains unchanged.

3.4 Canonical Forms of the Connection Network

Consistent, choices of independent and dependent fields do not violate Tellegen’s theorem and allow to
draw canonical networks, which are based only on connections and ideal transformers. Fig. 2 shows the
canonical form of the connection network when using as independent fields the vectors V* (dimension Nj)
and I (dimension N,). In this case the dependent fields are V' (dimension N, ) and I” (dimension Nj).
In all cases we have Ng+ N, independent quantities and the same number of dependent quantities. Note
that scattering representations are also allowed and that the connection network is frequency independent.
It is apparent from the canonical network representations that the scattering matrix is symmetric, ST =
S, orthogonal, 8T8 = I and unitary, i.e. SST = I, where the 1 denotes the hermitian conjugate matrix.

4 The Characterization of Circuits and Subcircuits

4.1 The Green’s Function Representation

The field solution £(x,w) may be expressed in integral form [17,18] as

Ew,w)= [ Gi(w,a',w) AT (2, 0), (27)
R
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Figure 2: Canonical form of the connection network.

where J (', w) is the excitation electric density current distribution within the region R; and G (z, z’, w)
is the electric dyadic Green’s form [16,19,20]
G =G deda’ + Gradedy + Gz dady’
+ Goy dydz’ 4+ Goady dy’ + Gazdydz’ (28)
+ G31 dz CL’L'/ + G32 dz dy/ + G33 dz dZ/ .

The prime in the integral denotes that this operation is carried out with respect to the source point
x’. The current density can be express by means of a surface density current J_,(’,w) flowing on the
surface OR; = (v/,v',w’ = wy) and related to J(«',w) as follows

J(@' w)=6w —w)) ' AT _,(x',w) z' iR, (29)

where the n is the unit differential form corresponding to the vertical coordinate w and whose orientation
is normal outward with respect to Ry, and () is the delta distribution. Inserting (29) in (27) yields

’

E(x,s) = - Gz, 2, w) NT (2 w). (30)

Now by imposing the continuity condition of the tangential components, and applying the equivalence
principle, the surface OR; is replaced by a perfect magnetic conductor and the equivalent electric surface
current defined as,

T a(@,w) = Hy(a',w). (31)
Also the tangential component of the electric field can be obtained by recognizing that
Qi =nJonA€& (32)
where the contraction s; us; of two unit differential forms s; and s; is defined by
Si 45j = 0ij - (33)
Applying this relationship together with (31), (30) results in

’

Ellww) = [ naln A Glleaw)) A ). (34)
JOR;



The superscript [ in (34) implies that the corresponding quantity belongs to the region Ry, so that £ and
ﬂi, for instance, represent the electric and magnetic field components tangential to OR;, transferred into
the region R;. The operation n un A applies only to the observation point @ while the integral is over @’.
This allows to define

Ziz,2',w)=n1(n A G(z,z/,w)) (35)

as the double differential form for the impedance representation of the dyadic Green’s function. The
substitution of (35) into (34) yields

Elx,s) = / Zlx, 2, w) AN HL(2,w). (36)
6Rl
which provides an integral relationship between the tangential electric and magnetic components on the
considered subdomain surface OR;.
In the same way we can derive
ﬂi(w,s) = yl(mvm/aw)/\éi(mlvw)' (37)
P ORZ

where Z(z,z’',w) and Y(x,x’,w) are the dyadic Green’s forms in the impedance representation or ad-
mittance representation, respectively. The Green’s forms Z(z, ', w) and Y(z,z’,w) are given by [21]

P l
1 z,
z! ’ —zl( § 38
(z, 2’ ,w) = Szoww + o wl (38)
and
Yz, 2’ ,w) = —yi(z,z') + E Iy(@ @) (39)
) ) Yo ) w — wl 9

The dyadic forms z)(x, ') and y}(x, ) represent the static parts of the Green’s functions, whereas each

term zi,(:c, 2’) and yfl(a:, x'), respectively, corresponds to a pole at the frequency wlq and wi,.

We discretize (36) and (37) by expanding the tangential fields on OR; into a complete set of vector
orthonormal basis functions. These expansions need only to be valid on OR;. The tilde ~ denotes the
truncation of the series expansion at n = Nj.

Em.w) = Vi (w)eh(x). (40)

Ht T,w) Z,n (41)

The differential forms of the electric and magnetic structure functions are related via

b, =x (n' Aep, ), (42a)
el = —x (n'ARL). (42b)

n

The structure functions fulfill the orthogonality relation

/ el Abl =6, . (43)
R



where n'(z) is the unit differential form normal to OR;. The expansion coefficients V., and I, may be
considered as generalized voltages and currents. From (40) and (41) and the orthogonality relation (43)
we obtain

V() = /d @ AL (44)
I(w) = /6 @) A ). (45)

If the domain R, is partially bounded by an ideal electric or magnetic wall £, or H, respectively vanish
on these walls. If the independent field variable vanishes on the boundary, this part of the boundary
does not need to be represented by the basis functions. If only electric walls are involved, the admittance
representation of the Green’s function will be appropriate, and if only magnetic walls are involved, the
impedance representation will be appropriate. Let us consider the domain in Fig. 1. In this case, the main
part of the boundary OR; is formed by an electric wall. Only ports 1 and 2 are left open. Choosing the
admittance representation, we only need to expand the field on the port surfaces into basis functions.
Applying the method of moments, we obtain

//m L @) A 2 (w2 w) A L () (46)

//aRl 2) A V(@2 w) A el (@) (47)

Then from (38) and (39), the impedance matrix Z,, ,(w) and the admittance matrix Y, ,(w) may be
represented by

1 1 1 w2 1
Zm,n(w) = ﬁ20m7n jTUWQ B le Zﬁ"m,n ’ (48)
P p
1, 1 W l
Ym,n(w) = ﬁ?hn,n + - ]TU(,L)Q B wl(QIy‘Im,n : (49)

4.2 The Foster Canonic Realization of
Distributed Lossless Reciprocal Circuits

For a linear reciprocal lossless multiport an equivalent circuit model may be specified by the canonical
Foster representation [11], [12]. Fig. 3a shows a compact reactance multiport describing a pole at the
frequency wy. This compact multiport consists of one series resonant circuit and M ideal transformers.
The admittance matrix of this compact multiport is given by

1 2
YA, (50)

Yaw) = —
A(w) JwLy w? — w3

with the real frequency-independent rank 1 matrix A; given by

2
ny1 nx 12 NAX1NMAN
2
N 2N 1 U N 2MA\N
Ay = . . _ : : (51)
2
NMANTINT NANNTN2 ... UV



The ny; are the turns ratios of the ideal transformers in Fig. 3a. A compact reactance multiport describing
a pole at the frequency w = 0 is shown in Fig. 3b. The admittance matrix of this compact multiport is
given by

1

Y, =
© 7 jwLo

(52)

where Ay is a real frequency independent rank 1 matrix as defined in (51). If the admittance matrix
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Figure 3: A compact series multiport element representing a pole a) at w = wy and b) at w = 0.
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is of rank higher than 1 it has to be decomposed into a sum of rank 1 matrices. Each rank 1 matrix
corresponds to a compact multiport.

The complete admittance matrix describing a circuit with a finite number of poles is obtained by parallel
connecting the circuits describing the individual poles. In the the canonical Foster admittance represen-
tation, the admittance matrix Y (p) is given by

N 2

1 1
A

JjwLg — jwLx w? —w¥

This admittance matrix describes a parallel connection of elementary multiports, each of which consists
of a series resonant circuit and an ideal transformer. Figure 4 shows the complete circuit of the canonical
Foster admittance representation. There exists also a dual impedance representation where elementary
circuits consisting of parallel resonant circuits and ideal transformers are connected in series. Figure 5a
shows a compact reactance multiport describing a pole at the frequency wy. This compact multiport
consists of one parallel circuit and M ideal transformers. The impedance matrix of this compact multiport
is given by

1 w?
Z\(w) = —— 5 54
") = e B (54
with the real frequency independent rank 1 matrix A; given by

n3,  MAIMA2 ... MAIMAN

UBVIISNI ’/7&2 e N 2MA\N
B, = ) ] . ) (55)

NANTIAL MANTAZ ... Min

10
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Figure 4: Foster admittance representation of a multiport.

Figure 5b shows a compact reactance multiport describing a pole at the frequency w = 0. The impedance
matrix of this compact multiport is given by

1
= - BO )
JwCy

where By is a real frequency independent rank 1 matrix as defined in (51). The complete impedance
a) b)
port M n;\Mﬂ%{ port M nOM:1%€

l [[]
| |
portd n :1 %{ C, port4 7y :1 %é

port3 a1 %{ port 3 n03:1 %g
port 2 nnzlég port2 g :l %g
port1 n, :1 %{ port 1 ngy:1 %g

Figure 5: A compact parallel multiport element representing a pole a) at w = wy and b) at w = 0.

Zo (56)

matrix describing a circuit with a finite number of poles is obtained by parallel connecting the circuits
describing the individual poles. In the the canonical Foster representation, the impedance matrix Z(w)
is given by

N 2

1 1 w
A(@) jwCo 0 Az:l jwCy w? — mf\ A (57)

The equivalent Foster admittance multiport representation or Foster impedance representation may be
computed analytically from the Green’s function. However it is also possible to find an equivalent Foster

11
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Figure 6: Foster impedance representation of a multiport

representation from admittance parameters calculated by numerical field analysis by methods of system
identification.

5 The Cauer Canonic Realization of Radiation Modes

Let us assume the complete electromagnetic structure under consideration embedded in a virtual sphere
S as shown in fig. 7. Outside the sphere free space is assumed. The complete electromagnetic field outside
the sphere may be expanded into a set of TM and TE spherical waves propagating in outward direction.
In 1948 L.J. Chu in his paper on physical limitations of omni—directional antennas has investigated
the orthogonal mode expansion of the radiated field [22]. Using the recurrence formula for spherical
bessel functions he gave the Cauer representation [11,12] of the equivalent circuits of the T'M,, and the
TFE,, spherical waves. The equivalent circuit expansion of spherical waves also is treated in the books of
Harrington [23] and Felsen [24].

The TM modes are given by

HIMT = xd (A,dr) (58)
1 .
Enm” = —xdHp", (59)
Jwe

where n = 1,2,3,4,..., m = 1,2,3,4,...,n,i = e,0, and j = 1,2. The radial component A% = of the
vector potential is given by

A, = agl, P (cos) cosmp HY (kr), (60)
A% = a2 P™(cos0) sinme HY) (kr), (61)

12
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Figure 7: Embedding of an electromagnetic structure into a sphere.

where the P"(cosf) are the associated Legendre polynomials and HY )(kr) are the Hankel functions.
The a¥,, and a%,, are coefficients. Inward propagating waves are represented by Hfll)(kr) and outward
propagating waves are represented by H%Q)(kr). Since outside the sphere, for » > ry no sources exist, only
outward propagating waves occur and we have only to consider the Hankel functions H,(LQ)(k:r).

The TE modes are dual with respect to the TM modes and are given by

ETEH = s d(FY.dr), (62)
1, 1 1
HZ;LIIEL = - ﬁ * dé'rj;zf ’ (63)
where n = 1,2,3,4,..., m = 1,2,3,4,...,n,i = e,0, and j = 1,2. The radial component F% _ of the
dual vector potential is given by
FS, = [P (cost) cosmp HY (kr). (64)
Fo = f% P™(cos0) sinmep HY) (kr). (65)

where the P} (cos ) are the associated Legendre polynomials and HY (kr) are the Hankel functions. The
féi and fo  are coefficients.

The wave impedances for the autward propagating TM and TE modes are given by

+ _ E:zne _ E:’mtp
Zh, =—mnl = e (66)
Hmmp HmnO

The superscript + denotes the outward propagating wave. For the TM and TE modes we obtain

ZIM = .777 ((k )) (67)
y®
Zaat = —jn%, (68)

where n = /p/e is the wave impedance of the plane wave. The prime ' denotes the derivation of the
function with respect to its argument. We note that the characteristic wave impedances only depend on
the index n and the radius r¢ of the sphere.

13



Using the recurrence formulae for Hankel functions we perform continued fraction expansions of the wave
impedances of the TM modes

jkT Jjkr + 27.Lk73+
jkr
+TM __
1
e —
jkr 7‘T1-,r+1
and the TE modes
1
et L
Jkr 21‘7,A l+ .
JEr 2;,}“‘3 " 27}]; .
+TE __ JrT
e

1
.71€T+1

These continued fraction expansions represent the Cauer canonic realizations of the outward propagating
TM modes (fig. 8) and TE modes (fig. 9). We note thet the equivalent circuit representing the TFE,,,,
mode is dual to the the equivalent circuit representing the T'M,,,, mode. The equivalent circuits for the
radiation modes exhibit high—pass character. For very low frequencies the wave impedance of the T'M,,,
mode is represented by a capacitor Cy,, = er/n and the characteristic impedance of the T'E,,, mode is
represented by an inductor Lo, = ur/n. For f — oo we obtain Z}tTM 7Z+TE _, p

eEr Er
n 2n-3
Il - o ___ —_—
] ]
™ wr ur
z, -1 2n-5 N

Figure 8: Equivalent circuit of T'M,,, spherical wave.

er er
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Figure 9: Equivalent circuit of T'E,,,, spherical wave.

6 The Complete Equivalent Circuit of Radiating Electromagnetic Structures

In order to establish the equivalent circuit of a reciprocal linear lossless radiating electromagnetic struc-
ture, we embed the structure in a sphere S according to fig. 10.

The internal sources 1 and 2 are enclosed in regions R3 and R4. Region Rz only contains the reciprocal
passive linear electromagnetic structure. Region R is the the infinite free space region outside the sphere

14
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Source 2

Figure 10: The complete radiating electromagnetic structure.

S. Ro may be either considered as a whole or may be subdivided into subregions. If Ro is considered
as a whole it may be modelled either by a canonical Foster admittance representation according to fig.4
a canonical Foster impedance representation according to fig.6. If the internal sources are coupled via a
single transverse mode with the electromagnetic structure via a single transverse mode one port per source
is required to model the coupling between the source and the electromagnetic structure. The radiating
modes in Ry are represented by one—ports modeled by canonical Cauer representations according to
fig.8 and fig.9 respectively. The external ports of the canonical Foster equivalent circuit, i.e.n the ports
representing the tangential field on the surface of S are connected via a connection network as shown in
fig.2.

From the above considerations we obtain for a reciprocal linear lossless radiating electromagnetic structure
with internal sources an equivalent circuit described by a block diagram as shown in fig.11 This block

| Source 1 I— —
[Source 2| REacTANCE [T] CONNECTION _-m
|

MULTIPORT NETWORK

| Source k I— — TE iy

Figure 11: Equivalent circuit of the complete radiating electromagnetic structure.

structure can be further simplified by contracting the equivalent circuit describing the electromagnetic
structure R2, the connection circuit and the reactive parts of the equivalent circuits of the radiation
modes into a reactance multiport. This reactance multiport again may be represented by canonical
Foster representations. Now the remaining resistors 7 are connected to the external ports of the modified
reactance multiport and we obtain the equivalent circuit shown in fig.12.

We summarize the result of the above considerations: Any reciprocal linear lossless radiating electromag-
netic structure may be described by a reactance multiport, terminated by the sources and by one resistor
for every considered radiation mode

For electromagnetic structures amenable of analytical description equivalent circuits may be computed
directly. However, topology as well as parameters of the equivalent circuit may be obtained from the
relevant pole spectrum computation when a numerical solutions is available [14,15]. A heuristic approach
allows also to model lossy electromagnetic structures [14,15]. System identification and spectral analysis
methods allow an efficient determination of generation of topology as well as parameters of the lumped
element equivalent circuit [18,25]. This approach produces topology as well as parameters of a model
conserving basic properties like reciprocity and passivity.

15
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Figure 12: Equivalent circuit of the modified complete radiating electromagnetic structure.

7 Conclusion

A systematic approach to establish lumped element equivalent circuit representations for reciprocal linear
lossless radiating electromagnetic structures has been presented. The radiating electromagnetic structure
may be described by a reactance multiport, terminated by the sources and by one resistor for every
considered radiation mode. The field problem is systematically treated by the segmentation technique, i.e.
by dividing the overall problem space into several subregions. Connection between different subdomains is
obtained by selecting the appropriate independent, field quantities via Tellegen’s theorem and translated
to a canonical network representation providing the connection network.

If we are subdividing an electromagnetic structure into subregions, equivalent Foster representations may
be given for the subdomain circuits. The equivalent subdomain circuits are embedded into a connection
circuit representing the boundary surfaces. For each subdomain, as well as for the entire circuit, a fre-
quency dependence extraction procedure has been described, which allows either in a closed form manner
for subdomains amenable of analytical description or via the relevant pole spectrum computation when
a numerical solutions is available, system identification and generation of lumped element equivalent cir-
cuits. In the case of radiating structures, the complete structure is embedded in a sphere and the field
outside the sphere is expanded into orthogonal spherical TM- and TE- waves. For each radiation mode a
Cauer canonic circuit representation is given.

The described approach produces topology as well as parameters of a model conserving basic properties
like reciprocity and passivity. The discussed methods allow to generate compact models of electromagnetic
systems. This is extremely useful, if the electromagnetic system embedded in larger circuits or systems
are considered.
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