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Dear Friends, 
Dear Masters of the Electromagnetism, 

Welcome to your own meeting in Antalya. 

I thank you very much for accepting our invitation to attend this periodical International 
Workshop on Electromagnetic Wave Scattering and discuss the recent developments as well 
as your own achievements with your colleagues from all around the World. 

We appreciate the Electromagnetic Theory because we know that it, together with the 
classical and quantum mechanics, is one of the basic three scientific pillars of the 
contemporary civilization. We are also fond of it because it constitutes a common intellectual 
world for all us. Its seemingly simple basic equations had unified, one hundred and thirty 
years ago, the three separate scientific continents of those days, namely: the electricity, the 
magnetism and the optics. Thus it had been an enthusiastic subject for all scientist including 
mathematicians, physicists and philosophers. It had also been an interesting and important 
example for the theory preceding experiments because it had claimed the existence of the 
electromagnetic waves which are, today, our common hobby. Today it still continues to open 
new areas for rather sophisticated technical applications such as satellite communications, 
medical tomography, non-destructive probing, radio-astronomy etc in addition to the classical 
wireless communication. We contemplate all these applications with deep admiration. So, we 
are indebted to all pioneers who have established and entrusted this monument to us. Among 
them I remember Coulomb, Ampère, Biot, Savart, Priestley, Örsted, Faraday, Maxwell and so 
on. To this very short list I would like to add also Lorentz and Einstein who had believed and 
used this theory to re-establish the rational mechanics (i.e. the relativistic mechanics) and 
fundamental concepts such as the time, length, energy, mass (or momentum), etc. 

I think in this workshop, during three days of intensive discussions, we will learn many new 
and interesting theoretical as well as engineering aspects of the Electromagnetic Theory .  

With these sentiments I hope you friendly discussions and happy days in Antalya. 

Prof. Dr. Mithat Idemen 
Chairman 
Scientific Committee of EWS’2008 
 
 



Dear Colleagues,  
 
On behalf of the Organization Committee, I am pleased to welcome you to the V. 
INTERNATIONAL WORKSHOP ON ELECTROMAGNETIC WAVE SCATTERING, 
organized by Akdeniz University and URSI Commission-B of National Committee of Turkey.  
 
As known, EWS was initiated by a group of scientists from Turkey, Japan and Germany 
under the leadership of Professors Mithat İdemen and Masahiro Hashimoto and Dr. Ernst 
Luneburg. The previous workshops were organized in June 1991, September 1995, September 
2000, October 2006, respectively. Regarding the interest which these meetings had created in 
the electromagnetics community, it is decided to be organized regularly every two years in 
Turkey. 
 
Selected papers presented at the first workshop in 1991 are published in “Analytical and 
Numerical Methods in Electromagnetic Theory” by Science House Co., Tokyo, 1993. 
Addison Wesley Longman Ltd. printed selected papers from the second workshop in 1995 
under the title "Direct and Inverse Electromagnetic Scattering," Pitman Research Notes in 
Mathematics Series-361, Great Britain, 1996. Finally in 2006, “Progress In Electromagnetics 
Research” (PIER) journal accepted to publish a Special Issue on EWS 2006. This Special 
Issue contains 20 papers, all of which are based on the papers presented at the EWS’2006. I 
am thankful to late Professor Jin Au Kong, Chief Editor of PIER for this kind consideration. 
 
Concerning the organization of this workshop, I would like to thank to the Electronics 
Department of Akdeniz University and the members of the Local Organizing Committee. My 
special thanks and sincere gratitude goes to Assistant Professors Selçuk Helhel and Gökhan 
Çınar who spent almost all their time for the organization of the EWS’2008.  
 
I would also like to thank Professor Ayhan Altıntaş from Bilkent University who is the 
Chairman of the Commission-B of National Committee of Turkey and also acted as the 
Workshop Chairman of EWS’2008.  

 
Finally, I am sure that this conference will provide an international forum for reporting 
progress and recent advances in the modern development of Wave Scattering Theory. I also 
hope that the conference will be enjoyable for all participants. 
 

 
 

 
Prof. Dr. A. Hamit Serbest 
Chairman  
Organizing Committee of EWS’2008 
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Enhanced Dual-Layer Grid Polarizers for THz Applications 
 

V. B. Yurchenko1 and E. V. Yurchenko2 
1Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine 

12 Proskura St., Kharkov, Ukraine 
2 “Precision Devices”, 12 Proskura St., Kharkov, Ukraine 

 
Abstract − Dual-layer frequency-selective wire-grid polarizers are proposed for THz and 
sub-THz applications. Dual-layer grid polarizers possess enhanced (squared) polarizing 
efficiency at a sequence of discrete frequencies in reflection and within extended frequency 
bands in transmission as compared to conventional single grids.  

 
1. INTRODUCTION 
This work is concerned with development of enhanced dual-layer grid polarizers of record-breaking 
performance in THz and sub-THz bands as compared to conventional grids. Enhanced THz polarizers are 
needed in astrophysics (detection of cosmic microwave background polarization at the level of -80 dB), 
polarization interferometry (space-borne defense-related systems), polarimetric remote sensing and 
security checks (target detection and recognition), spectroscopy (atmospheric research, chemical and 
pharmaceutical industry) and other areas.  

Despite the availability of advanced technologies, manufacturing high-quality THz band polarizers is 
a complicated problem [1]. Ideally, the finer grid, the better is the polarizer. In practice, finite conductivity 
of wires and irregularities of grids impose limitations, which become more restrictive for finer grids at the 
higher operation frequencies. Eventually, finite conductivity sets an absolute upper limit on the efficiency 
of THz polarizers when extremely thin wires are used in these devices. 

A possible way of relaxing the limitations is the use of multi-layer grid structures (photonic devices) 
of subwavelength period of each grid, though of resonant inter-layer spacing. The latter should improve 
the polarizer performance and increase the efficiency in THz band when using relatively coarse grids of 
thick wires, which are less expensive and much easier to produce and operate.  

Though multi-grid structures have been studied for many applications [2, 3], there is only one report 
published recently that suggests a possibility of multiplication of extinction ratio of two polarizers in 
tandem [4]. In that instance, however, the authors based their conclusions on Mueller matrices of abstract 
polarizers that do not account for the correct self-consistent solution of the electromagnetic problem and, 
as a result, missed a range of frequency-selective properties (the fact that the extinction ratio increases at 
certain frequencies while decreases at others, the dependence of the effect on transmission or reflection 
mode of operation, etc). 

Computer simulations made recently for special dual-layer grids [5] predict a resonant growth of 
polarization extinction ratio (up to 80 dB instead of the initial 40 dB for some realistic design, in line with 
proposition [4]) which is expected in certain frequency bands or at particular frequencies, depending on 
the choice of either transmission or reflection mode of operation (a notion of strong frequency effects has 
been missed in [4]).  
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The aim of this work is to develop a practical design and undertake experimental manufacturing of a 
few sets of polarizer-analyzer pairs of dual-layer wire-grid polarizers with subsequent experimental testing 
of their polarizing efficiency. The sets would include both the fine-grid devices for high-frequency 
(sub-THz) electromagnetic performance and relatively coarse model structures for detailed measurements 
of their polarization characteristics at relatively low frequencies in the band of f = 50 - 80 GHz. 

 
2. NUMERICAL SIMULATIONS 
Developing THz and sub-THz polarizers is a challenging issue because of constrained manufacturing and 
operation requirements. Numerical simulations allow one to optimize the design of dual-layer grid 
structures with account of realistic parameters of devices and their operation conditions.  

When simulating dual-layer grid polarizers, one can use an asymptotic model based on the effective 
boundary conditions for subwavelength grids obtained by L. A. Wainshtein. The conditions relate the 
averaged (smoothed) values of the electric and magnetic fields on the opposite sides of a subwavelength 
grid for both polarizations of the incident wave. By using the boundary conditions, one can evaluate, as a 
self-consistent electromagnetic solution, both the transmission and reflection coefficients of a composite 
structure made of a few layers of grids of any orientation and a few layers of any dielectric materials, for 
any polarization and inclination of incident electromagnetic wave [5].  

The model developed in our simulations takes into account both the geometrical parameters of grids 
(the wire diameter w, the grid period p, the inter-layer spacing b) and the electrical conductivity σ of wires 
(the model assumes b ~ λ >> p where λ is the radiation wavelength). For the purpose of manufacturing 
and electromagnetic testing of polarizers in the frequency band of f = 50 - 80 GHz available in the 
experiment (λ = 6.00 - 3.75 mm), we simulated dual-layer grid structures characterized by the following 
set of parameters: w = 0.08 mm, p = 0.32 mm, b = 1.3 mm, and σ = 107 Sm/m (Figs. 1- 5).  

Keeping in mind essential systematic effects common for experimental and real operation conditions 
(a limited beam width of radiation in connection with angular dependence of polarizer performance), both 
the uniform plane wave (curves “n_1” and “n_2”) and the actual Gaussian beam excitation typical for the 
experiment (curves “ns_1” and “ns_2”) have been considered and taken into account. 

Computer simulations reveal the following properties of dual-layer grid polarizers: 
(a) a significant (quadratic) growth of polarization ratio in reflected waves (the ratio RRE = ER / HR of 

reflected amplitudes for the incident E- (co-) and H- (cross-) polarized waves when either E or H field is 
parallel to grid wires) that happens at certain "spike" frequencies fn (Fig. 1, a), 

(b) a similar quadratic growth of polarization ratio in transmitted waves (the ratio RTR = HT / ET of 
transmitted amplitudes for the incident H- (cross-) and E- (co-) polarized waves) that occurs in extended 
frequency bands centered around the "spike" frequencies fn (Fig. 1, b),  

(c) a similar kind of effects for polarization ratios defined by relating reflected and transmitted waves 
of the same incident polarization, RH = HT / HR and RE = ER / ET , respectively (Fig. 2, a and b), 

(d) a precise 3dB splitting of the incident non-polarized beam into reflected and transmitted polarized 
waves that occurs at the "spike" frequencies fn regardless of the parameters of separate grids (Fig. 3, a), 

(e) a significant resonant absorption that occurs at the resonant frequencies fn
RES (Fig. 3, b), that, 

however, is not critical, since the structure is not going to be used at the resonant frequencies. 
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(a)                                           (b) 

Figure 1.  Polarization ratio  (a)  RRE = ER / HR  and  (b)  RTR = HT / ET  defined by considering reflected and 
transmitted waves at relevant polarizations of the incident field in the case of single-layer (n1, ns1) and 
dual-layer grids (n2, ns2) under the plane wave (n1, n2) and the Gaussian beam (ns1, ns2) excitation. 

  

(a)                                           (b) 

Figure 2.  Polarization ratio  (a)  RH = HT / HR  and  (b)  RE = ER / ET  defined by relating reflected and 
transmitted waves of the same incident polarization. 

  

(a)                                           (b) 

Figure 3.  (a) Polarizing beam power splitting and (b) power absorption by a dual-layer (n2, ns2) and a single-layer 
(n1, ns1) grid structure. 
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 Notice, the angular divergence of Gaussian beam (estimated to be in the range of 20 - 16 degrees in 
the frequency band of f = 50 - 80 GHz in this example) imposes a limit on polarization ratio at the “spike” 
frequencies in reflection as compared to the plane wave incidence, though no reduction of polarization is 
observed in transmission (other imperfections, e.g., non-uniform inter-layer spacing, produce similar 
effects). In this case, for the given dual-layer polarizer and beam parameters, we obtain the same 
polarization ratio at the “spike” frequency f1 = 57.7 GHz at the level of 60 dB in both reflection and 
transmission as compared to 30 dB for a similar grid of a single-layer device.  

 Figures 4 and 5 explain the enhancement of dual-layer grid polarizers by showing the frequency 
dependence of reflected and transmitted power of co- and cross-polarized waves. The reason for the 
enhancement is the suppression of (small) reflected cross-polarized component (H wave, with E field 
orthogonal to grid wires) and transmitted co-component (E wave, with E field parallel to grid wires) that 
occurs due to destructive interference of relevant waves. This happens at the “quarter-wave-plate” 
condition on the inter-grid spacing d = (2n-1) λ/4 where n = 1, 2, 3, … . This is precisely the condition of 
"spike" frequencies fn . Meanwhile, conventional half-wavelength resonant frequencies (d = n λ/2) 
correspond to the dips of polarizing efficiency due to increased transparency of dual-layer grids for 
co-polarized waves at the resonant conditions.  

 

  

(a)                                           (b) 

Figure 4.  (a) Reflected and (b) transmitted waves of E polarization in the case of single-layer and dual-layer grids. 

  

(a)                                           (b) 

Figure 5.  (a) Transmitted and (b) reflected waves of H polarization in the case of single-layer and dual-layer grids.
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3. EXPERIMENTAL ISSUES 
A few sets of dual-layer grid polarizers are going to be manufactured, with each polarizer being made as 
an assembly of two parallel wire grids stretched over the frame of appropriate aperture and thickness. The 
grids in each assembly should be sufficiently planar and parallel, with non-planarity and non-parallelism 
of grid planes less than plus-minus 0.02 mm over the aperture area in order to keep polarization ratio at 
the “spike” frequencies in reflection at the same level of 60 dB as discussed above. Similarly, 
misalignment of wires of two grids should be better than 3 arcminutes that corresponds to misfit of wires 
of different grids by about w = 0.08 mm (about one wire diameter) at one end of the grid pair as compared 
to the other end (assuming the grid aperture size LG = 90 mm).  

A pair of dual-layer polarizers that constitutes one polarizer-analyzer set is needed for polarization 
experiments. Dual-layer polarizers of one set made of the wire grids described above are going to be 
tested at relatively low frequencies of f=50-80 GHz. The other sets based on the finer grids will be used at 
the higher frequencies, e.g., in the frequency band of f=110-150 GHz and, eventually, at the frequencies 
up to f=300 GHz.  

Requirements for high-frequency testing of enhanced polarizers are demanding. In addition to precise 
positioning of polarizers in cross-orientation with accuracy better than 3 arcminutes for maintaining 
spurious signals below -60dB (1 arcminute for -70dB), detection of signals of ultra-low level is needed. 
As a promising way of solving the problem, one may use a resonator technique being developed for 
electromagnetic testing of ultra-low-loss materials [6].  

If using an open resonator designed for the frequency band of f=50-80 GHz, which is made of two 
concave mirrors of the diameter DM =100 mm and the curvature radius RM =110 mm placed at the distance 
LM =160 mm one from another, one obtains a Gaussian beam of half-width w0 =10-7.5 mm at the beam 
waist and wM =20-15 mm at the resonator mirrors. The beam of this kind is characterized by the angular 
divergence of 20-16 degrees mentioned above and maintains a spurious signal at the rim of the grid 
aperture of typical size LG = 90 mm at the level below -60 dB while having the grid in the middle of the 
resonator tilted at 45 degrees with respect to the resonator axis (at the normal grid orientation, the grid 
aperture size has to be LG > 52 mm at the beam waist and LG > 104 mm at the resonator mirrors). 

When expressing electromagnetic properties of a subwavelength grid in terms of homogenized 
parameters, one can compute the effective permittivity of grid in both co- and cross-polarized orientations 
(in co-polarization, the effective permittivity is negative and resembles the permittivity of plasma below 
the plasma frequency). Then, by measuring the effective permittivity of a dual-layer grid, one can verify 
the electromagnetic parameters of the entire structure against numerical simulations.  

An alternative representation of the same data is the plot of complex scattering matrix coefficients S11, 
S12 that shows specific features of resonant behavior of dual-layer grid polarizers, thus providing both the 
qualitative and quantitative characterization of these devices. 
 
4. CONCLUSIONS 
In conclusion, dual-layer grid polarizers are expected to have the following advantages as compared to 
conventional grids:  

(a) a significant increase of efficiency, even in the case of coarse grids of thick wires with account of 
possible grid irregularities and imperfections,  
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(b) an increase of the absolute upper limit of efficiency achievable with fine grids,  
(c) frequency-selective performance in either broad (in transmission) or narrow (in reflection) 

frequency bands, and  
(d) a possibility of tuning the operation bands by varying the device inter-layer spacing or tilting the 

polarizer with respect to the incident wave. 
Further development of dual-layer grid polarizers may require the fabrication of grids on thin-film 

low-loss dielectric substrates by using photolithographic methods for the better control of tolerances as 
necessary for pushing the operating frequencies higher into the THz band. 
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Radiation of a dipole on a strongly elongated body 
 

F. A.  Molinet  
MOTHESIM, Centre de la Boursidière, RN 186, BP 182, 92357 Le Plessis-Robinson,France 

 
Abstract  −  The boundary layer method extended by Andronov and Bouche [1] to 
strongly elongated objects is applied to the field radiated by a source located on a strongly 
elongated axisymetric body. Both perfectly conducting and impedance boundary 
conditions are considered. The author develops explicit solutions for the asymptotic 
currents on the surface in the paraxial direction. By matching these solutions with the 
classical creeping wave solutions on a non elongated object valid outside the paraxial 
region, uniform solutions have also been derived. Some numerical results comparing the 
new creeping wave asymptotics with the classical one, on a prolate ellipsoid, are shown. 

 
1. INTRODUCTION 
In this article, the radiation problem of an infinitesimal tangential magnetic dipole or normal electric 
dipole excitation on a perfectly conducting strongly elongated body of revolution is considered and the 
magnetic field on the surface is analysed. Away from the caustic boundary layer of the source, the 
theory of creeping waves on strongly elongated bodies is applied. Close to the source the field on the 
surface has been approximated by the known solution of a dipole on an infinite PC plane. In the 
paraxial direction this solution has been matched with the creeping wave solution for a strongly 
elongated body. It is shown that the amplitude of the field in the paraxial direction is enhanced due to 
a weaker attenuation constant of the magnetic creeping wave. Away from the paraxial direction our 
solution blends respectively with the solution of Pathak and Wang [2] for a double curved PC surface 
and the solution of Munk [3] for an impedance surface. 
The paper is organized as follows. In section 2 we recall the main steps of the boundary layer theory 
extended to strongly elongated bodies for PC and impedance boundary conditions and apply this 
theory to the specific problem of a dipole excitation. Explicit expressions are derived for the Green’s 
functions along a geodesic without torsion in the penumbra zone. In section 3 we describe the 
technique used to match the solution in the penumbra region with the solution given by the tangent 
plane approximation in the vicinity of the source, for PC and impedance boundary conditions,. 
Numerical results will be shown in section 4 and some concluding remarks are given in section 5. 
 
2. CREEPING WAVES ON A STRONGLY ELONGATED BODY EXCITED BY A 

DIPOLE 
The behavior of acoustic or electromagnetic creeping waves propagating on the surface of a strongly 
elongated convex body has been first studied by Andronov and Bouche [1] using the boundary layer 
method. The main steps of their approach, applied to electromagnetic creeping waves are also 
presented in [4] and a short description of the method is given in [5]. The Maxwell equations are 
written in the semi-geodesic curvilinear co-ordinate system ( )nas ,,  where s  denotes the curvilinear 
abscissa along a geodesic, a  denotes the curvilinear abscissa along a reference curve orthogonal to the 
geodesics and n  denotes the distance of the observation point to the surface. The curves orthogonal to 

the geodesics are also the wave fronts of the creeping waves on the surface. Let he
rr ,  denote the e.m. 

field. With the notations : 

HhEe ==
rr µε ,                                                                     (1) 

Maxwell’s equations in vacuum, with the tie ω−  time convention, read   

EikHrotHikErot −== ,                                                                (2) 
In the co-ordinate system ( )nas ,,  the first equation (2) becomes : 
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1

                                                                   (3) 

where g  is the determinant of the matrix tensor ( )nasjigij ,,, = .. The second equation (2) gives 

three other equations which may be deduced from (3) by the substitution  EHHE −→→ , .By 
using :. 

j
iji VgV =          (4) 

Maxwell’s equations may be expressed with only contravariant components. In order to solve these 
equations, the solution is stated in the form of an asymptotic expansion in powers of 3

1−k , the 
coefficients of which are determined recursively by substituting the stated form into the Maxwell 
equations and boundary conditions and equating terms of similar order in the large parameter k . In 

the boundary layer, n  is small, of order 3
2−k . However since ( )3

2
0 −= ktρ  for a strongly elongated 

object, we must retain the terms 
t

n
ρ

2
 and 2

2

t

n
ρ

 which are respectively of order 3
2−k  and 1. The details 

concerning the derivation of the expressions for the two principal order terms are given in [1] and [4]. 

By introducing the parameters 
m

k tρκ = and the reduced variables in the penumbra region : 

3
1

2
,, 






===
ρν

ρ
σ km

m
nksm

                                          (5) 

and Fourier transforming with respect to σ  the system of differential equations verified by aE  and 
aH  in the boundary layer along a geodesic without torsion, we obtain instead of the usual Airy 

equation, the following Heun equation : 

( ) 03
2

2
=−+

+
+

∂

∂
oo

o UU
U

ξν
κνν

                                                   (6) 

where oU  is the Fourier transform of either a
oE  or a

oH . and ξ  the spectral variable. Similarly, by 
writing the boundary conditions in the co-ordinate system ( )nas ,,  and using the same  « Ansatz » for 

E  and H , the following conditions are obtained on the surface ( )0=ν  : 

0

0~2~
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=
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 ++
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 ++

∂
∂
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κν

κν

a
o

a
o

a
o

a
o

E
Z
imE

HimZ
H

                                                     (7) 

where a
oE~  and a

oH~ .are the Fourier transform of  a
oE  and a

oH .respectively and where Z is the 
surface impedance. For a P.C. surface these conditions reduce to : 

0
~

,0~2~
=

∂
∂

=+
∂
∂

νκν

a
oa

o
a
o E

H
H

                                                     (8) 
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Until now, we have not specified the source which can be at finite or infinite distance from the object. 
If the incident field is a plane wave or a local plane wave the creeping wave starts at the shadow 
boundary and equations (6) to (8) are valid in the penumbra region. In the case of a point source 
located close to the surface in the boundary layer or on the surface, the creeping wave starts away 
from the point caustic region surrounding the source, in the penumbra region where the shadow 
boundary of the rays emanating from the source and the boundary layer of the creeping rays coalesce). 
In this region, the validity of equations (6) to (8) is submitted to the condition that ρ  and tρ  vary 
slowly with s . This condition is generally satisfied in the paraxial region of a strongly elongated 
object. 
Equation (6) is verified in vacuum by any solution of Maxwell’s equations expressed in the co-
ordinates ( )nas ,,  satisfying the special conditions verified on a strongly elongated object. It is 
therefore verified by the incident field, the total field and the diffracted field. Consider now Heun’s 
differential equation : 

( ) 03
2

2
=−+

+
+ V

d
Vd

d
Vd ξν

νκνν
.                                          (9) 

By applying the transformation : 

                                                           ( ) VY 2
3

κν +=                                                                        (10) 
equation (9) reduces to : 

                                                        
( )

0
4

3
22

2
=











+
−−+ Y

d
Yd

κν
ξν

ν
                                          (11) 

We see that when ∞→ν  or ∞→κ , Y  verifies the Airy equation : 

                                                        ( ) 0
2

2
=−+ Y

d
Yd ξν

ν
                                                                 (12) 

We denote by ( )νξ −1W  and ( )νξ −2W  the two independent solutions of (12) known as the Miller 
type Airy functions. 

Let ( )( )κνξ ,1Y  and ( )( )κνξ ,2Y  be the two independent solutions of (11) which behave respectively 

like ( )νξ −1W  and ( )νξ −2W  when ν  tends to infinity and let : 

( ) ( )( ) ( )( )κνκνκν ξξξ ,,, 21 YYV +=                                           (13) 

Then it follows from (11) that when ∞→κ  ( )( )κνξ ,1Y  tends to ( )ξν −1W  and ( )κνξ ,V  tends to 

( ) ( ) ( )ξνξνκν −+−=− 21 WWV . 

Another consequence of (11) is 0=
νd

dW
 where W  is the Wronskian of two independent solutions of 

(11). Hence ( )( )ξξ VYW ,1  and ( ) ( )( )21 , ξξ YYW  are independent of ν  and are respectively equal to 

( )VWW ,1  and ( )21 ,WWW  which are known and given by 1 and i2−  respectively. These properties 
together with the radiation condition, the boundary conditions and the reciprocity condition allow us to 
construct the Green functions ( )κνσ ,,, vGE ′  and ( )κνσ ,,, vGH ′  of an electric and a magnetic 
dipole respectively, located in the boundary layer and parallel to the binormal of a torsionless 
geodesic. 
Let ( )κνσ ,,,~ vGE ′  and ( )κνσ ,,,~ vGH ′  be the Fourier transforms of EG  and HG  respectively. 
These Green’s functions verify the Heun equation  (9) and the boundary conditions (7) and (8). If  we 

denote by iG  the Green’s function of the source in free space, the Green’s function dG of the 

diffracted field is defined by di GGG += . Since iG~  is a solution of (9), dG~ is also a solution of 
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(9). Hence, by applying the transformation (10) and the radiation condition we see that dG~  must be 

proportional to ( ) ( )( )κνκν ξ ,12
3

Y−+ . Taking into account the reciprocity theorem, we can write : 

( ) ( ) ( )( ) ( )( )κν
κν

κκν
κν

κκξκννξ ξξ ,,,,,,~ 12
3

12
3

YYAG d
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+′
′
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



+′
=′                (14) 

Similarly, since for ∞→κ , iG~  must tend to the expression obtained for a non elongated object 
given in [6], we have : 
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
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






+

=′ VYGi                      (15) 

where ( )ννν ′=> ,max , ( )ννν ′=< ,min . 
The unknown function ( )κξ ,A  is determined by applying the boundary conditions on the surface. 
Different expressions are obtained for an electric and  a magnetic dipole and for a PC or an impedance 
surface. The case when both the source and the observation point are on the surface is encountered in 
the antenna coupling problem. For a magnetic dipole, by taking the inverse Fourier transform of 

d
H

i
H GG ~~
+ , we obtain : 

( )
( )( )

( ) ( ) ( )( )κ
κ

κ

ξκ

π
κννσ
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2
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By normalizing HG  for ∞→κ  (See Logan [6]) we obtain the corresponding Nicholson’s function : 

:             ( )
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                   (17) 

For an electric dipole parallel to the binormal of the geodesic, we obtain another Nicholson’s function, 

the normalized form of which is obtained by :replacing Z  in (17) by 1−Z . For a PC surface, 0=EG  
but its mixed derivative with respect to ν  and ν ′  is different from zero and defines another 
Nicholson’s function, the normalized form of which is given by : 
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                        (18) 

 
3. MATCHING WITH THE SOLUTION IN THE SOURCE REGION 
In the source region, the asymptotic solution is matched with the tangent plane approximation. For a 
magnetic dipole of intensity mpdr  tangent to a PC surface, the magnetic field on the plane tangent to 
the surface is given by : 

: ( ) ( ) ( )
rr

eGGpdrotrotiMHMH
rrik

m
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i
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===
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rr
rrr

rr

πωµ 4
,22  

In the co-ordinate system ( )as ,  on the surface, we get : 
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e
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where oY  is the admittance of free space and ss ˆˆ =′ , sraa ==′ ,ˆˆ . 
When the magnetic dipole is oriented in the direction of the binormal to the geodesic, the radiated 
magnetic field on the planar surface is given by : 

( )
( ) r

e
rkrk

iadpYikMH
ikr

mo 









−+= 2

11ˆ2
4π

r
                              (20) 

Since the dominant term of the creeping wave field along a strongly elongated PC body in the paraxial 
direction, is given by : 

( ) ( )
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4
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π
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                                       (21) 

We can match both solutions by writing : 
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A similar procedure has been applied to an electric dipole normal to a PC surface. 
If the magnetic dipole is tangent to a coated surface, the tangential component of the magnetic field is 
given by : 
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







∇⋅∇+−= Qpd
k

VpdYkH mtoomot
rr

2
1

4π
                          (23) 

with : 
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where ooV  and ooW  are the Sommerfeld integrals for a dipole above a dielectric layer of 
relative permittivity rε  and permeability rµ , backed by a perfect conductor [7]. 
In the co-ordinate system ( )as , , (23) takes a form similar to (19), given by : 
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                                                                                                                                                              (25) 
For a magnetic dipole along the binormal to the geodesic, the dominant term is given by : 

oomot VadpYkH ˆ
4π

−=                                                             (26) 

Close to the source, we replace ooV  by its quasi-static approximation. The dominant term of the 
creeping wave field is given by : 

( )
s
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iks

HHmoot ζσ
π

,,ˆ2
4

=
r

                               (27) 

By matching both solutions, we obtain : 
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For an electric dipole normal to the surface, the tangential magnetic field on a coated planar surface is 
given by  
 

                                                
ρπ ∂

∂′⋅= oo
et

V
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4
r

                                                     (29) 

and the matching procedure leads to : 
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π
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



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The formulas resulting from the matching of the solution in the source region with the solution in the 
Fock region presented so far, are valid in the paraxial region of a strongly elongated object. It is 
possible to extend these solutions outside the paraxial region where the classical creeping wave 
formulation applies by replacing the Nicholson functions in the solutions established by Pathak and 
Wang [2] for a PC surface and by Munk [3] for a coated surface, by the new Nicholson’s functions 
depending on κ . Outside the paraxial region, κ  becomes large and the new Nicholson functions tend 
smoothly to the classical ones. 
 
4. NUMERICAL RESULTS 
The formulas established in this article have been applied to a magnetic dipole source located on the 
surface, in the middle of a prolate ellipsoid where the radius R  of its cross-section is maximum. The 
dimensions of the ellipsoid are defined by its principal radii of curvature at the source: 

mmR 200,25.0 == ρ  which gives a half-length of the ellipsoid approximately equal to m7 . The 
curves on Fig. 1 give the variations with respect to the curvilinear abscissa s  of the radius of curvature 

or of the geodesic in the plane of symmetry, the radius of curvature ( )oTr  of the wave front along the 
geodesic (transverse radius of curvature), the parameter κ  for GHzF 1=  and the torsion of the 
geodesic which for this particular geodesic is zero. 
We see that oTr  remains less than m1  and decreases very slowly for ms 5.0> . Likewise, the 
variation of the parameter κ  is very slow and its values remain between 1 and 2 for 3.63.0 << s . 
Hence, in this domain of variation of s  , the ellipsoid has the characteristics of a strongly elongated 
object at the frequency  considered GHzF 1= . 
The variation of the magnetic field on the surface radiated by a magnetic dipole oriented along the 
binormal to the geodesic following the generatrix, is given on Fig. 2 for a PC surface and compared to 
the curve with lower values obtained with the classical creeping wave formulation. These results show 
an enhancement of the field on a strongly elongated object. 
If the same ellipsoid is coated with a dielectric material of mm3  thickness with relative permittivity 

25.3=rε , ( )1=rµ  giving 0631.0iH −=ζ , the variation of the magnetic field radiated along the 
generatrix, by the same magnetic dipole, is shown on Fig. 3. The lower curve corresponds to the 
results obtained on a PC surface with the classical formulation. These results compared to the results 
of Fig. 2 show that the enhancement of the magnetic field due to the coating is further augmented on a 
strongly elongated object. Other results have been obtained showing that these phenomena are limited 
to the paraxial region. Outside that region the results tend smoothly to those obtained with the classical 
formulation. 
 
5 CONCLUSION 
Explicit formulas for the field radiated on the surface of a strongly elongated body  by an electric or 
magnetic dipole respectively perpendicular or parallel to the surface have been derived for perfectly 
conducting and impedance boundary conditions (coated surface). Numerical results obtained on a 
strongly elongated prolate ellipsoid show that the binormal component of the magnetic field on the 
surface in the paraxial region, is enhanced compared to the results predicted by the classical creeping 
wave formulation. This analysis is of importance for the prediction of coupling between conformal 
antennas using UTD type ray solutions.  
 
REFERENCES 
[1] Andronov, I., and  Bouche D., " Asymptotics of creeping waves on a strongly prolate body ", 

Annales des Télécommunications, 49 (3-4), pp. 205-210, 1994. 
[2] Pathak, P.H., Wang,. N., Burnside, W.D. and R.G. Kouyoumjian "A uniform GTD solution for the 

radiation from sources on a convex surface ", IEEE Trans. on Antennas and Prop., Vol. AP 29, N° 
4, July 1981. 

2-6                                                                                                                                                                  EWS 2008



[3] Munk, P., " A Uniform Geometrical Theory of Diffraction for the radiation and mutual coupling 
associated with antennas on a material coated convex conducting surface ", Ph. D. Dissertation, 
The Ohio State University, Columbus, Ohio, 1996. 

[4] Molinet, F., Andronov, I., and Bouche, D.,. " Asymptotic and Hybrid Methods in 
Electromagnetics ", IEE Electromagnetic Waves Series 51, 2005. 

[5]  Molinet, F.," Plane wave diffraction by a strongly elongated object illuminated in the paraxial 
direction ", IVth International Workshop on Electromagnetic Wave Scattering, Gebze, Turkey, 18 
– 22 Sept. 2006. 

[6] Logan, N.A., " General Research in Diffraction Theory ",Vol. 1, Technical Report LMSD-288087, 
Lockheed Missiles and Space Division, Dec. 1959. 

|7]  Chew. W.C., " Waves and Fields in Electromagnetic Media " Van Nostrad Reinhold, New York, 
1990. 

. 
 

 

0

1

2

3

4

5

0 1 2 3 4 5 6 7

s (m)

ro roT kappa torsion
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Abstract − The linear oscillator equation with varying angular frequency is solved 
analytically by taking the oscillation phase as a new independent variable. A 
closed-form Floquet solutions are constructed in the case of periodically modulated 
parameters. Explicit formulas for the increment of parametric oscillations are used 
in the inverse problem of optimal control. An analogy with Bloch waves in a 
periodically modulated medium allows one to use these results for the optimal 
design of multilayer mirrors and Bragg waveguides. 
 

1. INTRODUCTION 
Parametric resonance plays an important role in mechanics, electrical engineering and photonics. 

The simplest example from everyday life: a child rocking on a swing. Making it rock with increasing 
amplitude without mother’s help, he or she solves a typical problem of optimal control. 
Mathematically, it is described by the oscillator equation with variable angular frequency. By 
choosing a proper periodical length variation the child easily realizes a Floquet solution with 
maximum possible amplitude increment. This easiness is in a drastic contrast with sophisticated 
mathematics involved in this inverse problem. In the absence of analytical solution one has to use 
approximations or numerical schemes to construct the solution of the direct problem for each set of 
parameters and to pick up the optimum solution by the trial-and-error method. 

The secret of child’s success is the use of a proper physical variable: the phase of the swing 
oscillations which the oscillator parameters must be synchronized with. In this work, we put this idea 
in a strict mathematical form: choosing oscillation phase as independent variable reduces the problem 
to a nonlinear equation set yielding an exact parametric solution for any law of the oscillator 
parameters variation. In this way we derive explicit formulas for the oscillation period  and the Floquet 
increment allowing one to formulate and easily solve the optimization problem. 

By analogy, we apply these results to wave propagation in periodic media, in particular, to the 
optimal design of multilayer mirrors and optical Bragg fibers providing maximum field confinement 
in the periodical dielectric cladding. 

 
2. LINEAR OSCILLATOR. PARAMETRIC SOLUTION 

Consider a linear oscillator equation with variable angular frequency ( )tω : 
2 ( ) 0u t uω′′ + =                                                         (1) 

For different ( )tω  it may have oscillating solutions with arbitrarily varying period and 
amplitude – see Fig. 1(a). An important practical problem is optimal control of the oscillation 
parameters. One of the most interesting effects is parametric resonance caused by periodical 
variations of the angular frequency ( )tω . 
 
 
 
 

 
 
 
 

(a)           (b) 
Fig.1. Oscillating solution ( )u t  and its phase ( )tψ . 
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In the small perturbation case  
 

2 2
0( ) (1 cos ), 1t h t hω ω ν= + <<                                              (2) 

it is well known [1] that for 
22

,2 00
0

ω
δω

ω
δωων

hh
<<−+=  an exponentially growing solution 

arises: 
)exp(cos)( 0 tttu µω ⋅≈                                                         (3) 

with the increment 

2
2

0 )(
22

1 δω
ω

µ −





=

h
                                                       (4) 

For stronger sinusoidal perturbations (h ~ 1) the result is given by the theory of Mathieu functions [2]. 
In a general case of periodic ( )tω  calculation of the resonance bands and amplitude increments 
is a purely computational procedure providing numerical material scarcely helping to solve 
the inverse problem of optimal control. 

We choose a direct analytical approach to the inverse problem. Let us introduce a new 
variable 

1 ( )( ) cot
( ) ( )
u tt
t u t

ψ
ω

− ′ 
=  

 
                                                         (5) 

being the phase of the oscillating solution )(tu . It is governed by the following nonlinear equation 

ψ
ω
ωωψ 2sin

)(2
)()()(
t
ttt

′
+=′                                                      (6) 

For )(2)(,0)( 2 ttt ωωω <′>  function )(tψ  is monotonously growing – see Fig.1(b). Equation 
(6) still does not yield new analytical solutions. The situation changes if we consider )(tω  as 
a parametric function of the phase ψ : 

[ ])()( tt ψω Ω=                                                                  (7) 
It is easy to see that the functions )(ψΤ=t  and )()( ψUtu =  satisfy the following set of nonlinear 
equations 

ψ
ψ
ψψ

ψ
ψ

ψ
ψ
ψ

ψ
ψ

2

2

cos
)(
)(cot

)(
)(

2sin
)(2

)(
)(

1)(

Ω
Ω

−=

Ω
Ω

−
Ω

=

&&

&
&

U
U

T
                                                 (8) 

that can be solved in quadratures for any a priori chosen function ( )ψΩ . From the first equation it 
follows 

( )
02

1 1 1( ) sin 2 1 ( )sin 2
2 2

gQt T d t e g d
Q Q

ψψ ψ ψ ψ ψ ψ
ω

   ≡ = − = + +     
∫ ∫

&
&   (9) 

  
where the substitution ( ) exp[ ( )]gψ ω ψΩ = −  has been made for convenience. And the latter one 
integrates to yield an explicit analytical solution of Eq.(1)  

2

0

1( ) ( ) sin exp[ ( ) cos ( )sin 2 ]u t U g g d
ψ

ψ ψ ψ ψ ϕ ϕ ϕ
ω

≡ = + ∫  (10) 

satisfying the initial condition 0 0( ) 0, ( ) 1u t u t′= = . 
The second independent solution ( ) ( )t Vυ ψ≡ satisfying 0( ) 1tυ = , 0( ) 0tυ′ =  is derived from the 
Wronskian 1u uυ υ′ ′− = : 
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( )sin ( )sin 2

( )cos ( )sin 2 ( )cos2 2 ( )sin 2

0

( ) ( ) cos

sin ( )sin 2 ,

g g d

g g d g g d

t V e

e g e d

ψ

ψ ϕ

ψ ψ ϕ ϕ ϕ

ψ ψ ϕ ϕ ϕ ϕ ϕ χ χ χψ

υ ψ ψ

ψ ϕ ϕ ϕ

−

+ − −

∫
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∫ ∫
− ∫ &

 (11) 

Formulas (10)-(11) describe exact solutions to the equation (1) for a very wide class of functions 
( )tΩ . The only requirement is one-to-one correspondence between t and ψ . In particular, it is easy to 

construct a parametric solution for a periodic function ( )tΩ . 

3. PERIODIC MODULATION. PARAMETRIC RESONANCE 
Parametric resonance corresponds to an exponentially growing solution ( ) ( ) exp ( )u t y t tµ= of 
Eq.(1) which may exist for periodically varying oscillator parameters in virtue of the Floquet theorem. 
The above approach allows us to construct a continual set of Floquet solutions and reveals a very 
simple relation between the increment µ  and the perturbation form ( )tω . Let us define 

( ) log[ ( ) / ]g ψ ψ ω= − Ω  as a periodic function of period π : ( ) ( )g gψ π ψ+ = . Then 

( ) 2 ( ) 2

0

2 2( ) ( ) sin sing gT T e d e d
ψ π π

ϕ ϕ

ψ

ψ π ψ ϕ ϕ ϕ ϕ τ
ω ω

+

+ − = = ≡∫ ∫  (12) 

 
Therefore, ( )T ψ  is a sum of linear function τψ π  and some periodic function ( )T ψ% : 

( ) ( ) , ( ) ( )T T T Tψψ τ ψ ψ π ψ
π

= + + =% % %  (13) 

and ( )tω  is a τ -periodic function of  t  variable: 
( ) ( )( ) ( )g gt e e xψ π ψω τ ω ω ω− + −+ = = =  (14) 

Furthermore, it follows from (10)  

( )

0

( ) ( ) ( ) , ( ) ( )sin 2Su t U U e S g d
ψ

ψψ ψ ψ ϕ ϕ ϕ≡ = = ∫%  (15) 

where ( )U ψ%  is a 2π -periodic function (anti-periodic on π  interval) while the integral ( )S ψ  contains 
a linear term: 

0

( ) ( ) , ( ) ( ) , ( ) sin 2S S S S g d
πψψ ψ ν ψ π ψ ν ϕ ϕ ϕ

π
= + + = = ∫% % %  (16) 

Note an elementary integral representation of the coefficient ν , in contrast with standard approaches 
[3]. Inversion ( ) ( )T xψ ψ⇒  yields a Floquet solution with increment ν τ  and period 2τ : 

( ) ( ) , ( 2 ) ( )
t

u x u t e u t u t
ν
τ τ= + =% % %  (17) 

If the integral (16) is positive, the amplitude of oscillations ( )u t  is exponentially increasing, the 
incrementµ being proportional to the second odd harmonic of the modulation function ( )g ψ  

0 2 2
1

( ) ( cos 2 sin 2 )m m
m

g a a m b mψ ψ ψ
∞

=

= + +∑       (18) 

Namely: 

22
bν πµ

τ τ
≡ =           (19) 

Equations (16-19) give an exact mathematical description of parametric resonance when the 
modulation period coincides with the half-period of the oscillations. In accordance with general theory 
[1], in Nπ -periodic case: ( ) ( )g N gψ π ψ+ = , higher-order resonances arise. Even values of N 
correspond to τ -periodic, and odd N numbers - to 2τ -periodic Floquet solution. 
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4. APPLICATION TO OPTIMAL DESIGN OF BRAGG WAVEGUIDES 
There is a close analogy between parametric oscillations and wave propagation in a 

periodically modulated medium. In the simplest case monochromatic wave propagation is 
described by the 1D Helmholtz equation 

2 ( ) 0, ( ) ( ), /u q x u q x kn x k cω′′ + = = =       (20) 
Reducing to Eq.(1) by substitution , ( ) ( )t x t q xω→ → . For a periodically modulated refraction 
index ( )n x , Bloch waves arise whose dispersive properties are quite different from the case of 
uniform medium n Const= . In photonics, of great importance are evanescent Bloch waves in 
“forbidden” frequency bands [4,5] - exponentially descending solutions ( ) ( ) exp ( )u x y x xµ= −  with 
periodic pre-exponent ( ) ( )y x y x= +Λ , existing by virtue of the Floquet theorem. Due to parametric 
resonance, periodic dielectric layers may provide good wave field confinement even with low optical 
contrast 1nδ <<  and small number of layers. Here, an important practical problem arises: to find an 
optimum refraction index profile ( )n x  providing maximum field decay in the multilayer structure. 
The above analysis allows us to give a rigorous solution to this problem of optimal design. 
 By denoting ( ) ( ) exp[ ( )]q x Q q gψ ψ≡ =  with a reference constant q  and arbitrary π -periodic 
function ( )g ψ we derive from (9-10) a wide class of exponentially descending Floquet solutions to 
Eq.(20), with period  

( ) 2

0

2 singe d
q

π
ϕ ϕ ϕ−Λ = ∫          (21) 

 
and attenuation per period 

0

( )sin 2g d
π

ν µ ϕ ϕ ϕ≡ Λ = ∫         (22) 

Let the technological constraints set the upper and lower bounds of the refraction index: 

2 1( )n n x n< < . Setting q kn= , we see that 
[ ( )]( ) log n Xg

n
ψψ =  lies between the limits 

1,2
1,2 log

n
g

n
= . Taking into account the sign change of sin 2ϕ  at 2ϕ π=  we easily deduce that the 

step function { }1 2( ) , 0 ; ,2 2g g gπ πψ ψ ψ π= < < < <  provides the absolute maximum of 

the decrement ν  within given constraints:  
2

1
1 2 1 2

20

max 2( ) sin 2 log ng g d g g
n

π

ν ϕ ϕ= − = − =∫  (23) 

It corresponds to an idealized quarter-wavelength meander profile : 1 1 2 2 1 24,n n λ= = Λ = +l l l l  
[4-6] and provides the highest reflection coefficient among the multilayer mirrors with given number 
of layers. A more realistic smooth index profile results from retaining in the Fourier series (14) the 
only essential harmonic: 

sin 2( ) sin 2 , ( )g q k n eδ ψψ δ ψ ψ= ⋅ = . (24) 

The model parameters are set by the bounds of the refraction index 1
1 2

2

1, log
2

nn k n n
n

δ= = . By 

substituting (24) into Eqs. (9-10) we obtain x coordinate as a function of phase ψ  

0

sin 21( ) 1 sin 4
2

x X e d
q

ψ
δ ϕ

ψ

δψ ϕ ϕ−  = = − 
 ∫  (25) 
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and a parametric representation of the descending Floquet  
solution 
 

1sin 2 sin 4
2 41( ) ( ) sinu x U e

q

δ
ψ ψ ψ

ψ ψ
 − + + 
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The structure period and the Floquet exponent are 
sin 2 1

0
20

1 ( ) , log
2 4

ne d I
q q n

π
δ ϕ π π πϕ δ ν δ−Λ = = = =∫

 (27) 
 
Formula (24) suggests an optimum smooth index profile 
providing fastest wave field attenuation in the periodic 
dielectric layered structure (Fig.2).  

This analytical solution can be directly used for the 
optimization of a planar Bragg waveguide – just by replacing the coefficient in Eq.(16) with 

2 2 2 2( ) ( )q x k n x β= −  where β  is the effective wave number of a propagating TE mode: 
( ) exp( )yE u x i zβ= - see [7]. The optimal smooth index profile and transversal field distribution of 

the fundamental waveguide mode are depicted in Fig. 3. 

5. CONCLUSION 
Choosing an adequately defined phase of the 

oscillations function as a new independent variable reduces 
the parametric oscillator equation to nonlinear equations 
explicitly integrable for arbitrary form of the parameter 
modulation. In such a way we obtain an explicit description 
of parametric oscillations and derive a closed-form 
expression for the parametric resonance increment 
facilitating the solution of the problem of optimal control. 
An analogy with wave propagation in periodically 
modulated media allows one to apply these results to the 
design of photonic band-gap structures. It allows one to 
explicitly write down the parameter to be optimized and 
make use of standard variation calculus for the search of an 
optimum solution. We illustrate the method with examples 
of optimal multilayer mirror and Bragg waveguide providing maximum field decay in the periodic 
cladding structure. 
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Abstract—Special Relativity is traditionally based on the two postulates introduced 
in Einstein’s 1905 paper. This often proves to be pedagogically problematic, 
especially in relation to the Lorentz Transformation of time. We derive here the low-
velocity approximation of the Lorentz Transformation via simple kinematical ideas 
based on the propagation of tagged light pulses. This approach provides continuity 
with what students are familiar from elementary mechanics. The similarity and 
dissimilarity of the Lorentz and Galilean Transformations are discussed. Finally, the 
exact Lorentz Transformation and the prevalent axiomatic approach are discussed. 
 
 
1. Introduction and Statement of the Problem 
 
The prevalent textbook approach (e.g., see [1]) towards teaching the Lorentz 
Transformation (LT) of Einstein’s Special Relativity (SR) theory follows the 
methodology of his celebrated 1905 paper [2]. Einstein introduced SR via the two 
Postulates of Relativity stating that for all inertial observers: (i) the laws of physics 
(Einstein [2] specifically focused on Electromagnetism) take the same form; and (ii) 
the speed of light  is invariant. This axiomatic approach, sometimes with a few 
variations (see for example [3, 4]), is universally employed in teaching SR.  

c

 As well as its aesthetic appeal, the axiomatic approach has the advantage that 
it quickly confronts students with ideas such as time dilation and length contraction. 
However, to enable students to assimilate ideas incrementally, an alternative approach 
built around Newtonian kinematics may be beneficial.  
 Actually, Einstein’s postulates emerged only after his predecessors had 
grappled with relativistic ideas via kinematical arguments that nowadays seem to us 
as somewhat naïve [5]. Those arguments, notably Poincaré’s paper [6], were based on 
exchange of light signals. Arguments based on light propagation must a priori assume 
the kinematics of light propagation in free space (vacuum). Below we consider 
relatively moving observers, but assume the light waves to move in one frame (the S 
frame described below) only. Consequently Postulate (ii) does not feature at this 
stage. 

Our goal is to explain in simple terms the elements involved in the LT without 
immediately invoking the invariance of the speed of light. Such a program can take 
various forms, e.g., see [7]. Like the forerunners of SR, we start with the low velocity 
approximation whereby the well-known relativistic factor  is 
approximated by 

2 2 1/(1 / )v cγ −= − 2

1γ = . Crucially, we do not assume the Galilean approximation 
 but rather derive the correct low-velocity time transformation .  tt ′= 2/ cvxtt −=′
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Once students have assimilated the low-velocity transformations of space and 
time, these can be refined to their relativistically exact form by accounting for the 
symmetry of inertial systems and Postulate (ii) above. While the space transformation 
is straightforward, the time transformation is counter-intuitive and requires detailed 
expounding.  
 As with the early historical discussions [5], the arguments presented will be 
purely kinematical. But in contradistinction, our discussion is based on measurements 
of space and time made within a single inertial reference system , referred to as the 
Lab System. We avoid velocity addition forms likec

S
v± , obviously contradicting 

Postulate (ii), often appearing in early discussions [5].  
 The use of light signals facilitates the synchronization of clocks in arbitrary 
inertial systems. Accordingly, in each such system a latticework of rods is posited for 
establishing distances and locations. By emitting a pulse from a Master Clock (MC) 
placed, say, at the origin of the Lab system, all clocks in that system can be 
synchronized. This standard construction (e.g., see [1]) is discussed at the beginning 
of Einstein’s paper [2]. The process of clock synchronization within a single inertial 
system is performed without the assumption that the speed of light  is the same for 
all inertial observers in relative motion, i.e., Postulate (ii) is not required at this stage. 

c

 Length separations and time durations measured in a system , moving with 
constant velocity relative to  will be deduced through their relationship to space-
time coordinates in .  

S ′
S

S
 
 
2. Lorentz and Galilei Transformations 
 
Consider frame S ′  moving with velocity  with respect to  along their co-aligned v S
x -axes. When , we assume cv << ( ) 1/ 22 21 /v cγ

−
1= − ≈ . In retrospect, already 

knowing Einstein’s SR, we note that the LT takes the form (cf. [5]) 
 
 x x vt′ = −   (1) 
   (2) 2/t t vx c′ = −
 ,y y z z′ ′= =   (3) 
 
where c  is the vacuum speed of light observed in . Since we will obtain (1) and (2) 
without the second postulate we make no assumption about the speed of light in .
 The Galilei transformation is obtained from (1)-(3) by taking in (2) the 
limiting case , leading to t

S
S ′

c →∞ t′ = , i.e., becoming a statement that time is identical 
for all observers in relatively moving inertial systems. The Galilean approximation 

 is often ascribed to low velocities and/or small values oft t′= x . Mathematically this 
means that in (2) the condition 2/vx c t<<  must be satisfied, implying that at some 
arbitrary x  the condition is satisfied only later than some time value t . For small time 
values  the condition only holds near the origin . Obviously this is too 
restrictive if we are seeking a description in which the spatial and temporal separation 
of events is arbitrarily. For such a description the limit c must be taken to arrive 
at . However, infinite light speed, with its attendant connotation of instantaneous 
communication (or instantaneous transmission of information, akin to action at a 
distance) is inconsistent with experiment and with theory in the context of  Maxwell’s 
equations. In other words, the Galilean Transformation 

0t

t′

→ 0x →

→∞

tt

t =

′=  and Maxwell’s 
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equations are incompatible in the sense that we cannot at the same time insist that 
 and discuss a theory that predicts light propagation at some finite speedc →∞ *.   

 
 
3. The Spatial Transformation 
 
 A kinematical explanation of (1), dubbed as the spatial transformation, is 
straightforward. Written in the form 
 
 x x vt′= +   (4) 
 
(1) describes the path of motion (aka equation of motion) along the x -axis of a point 

 whose initial position at time 0t =  is x x′= . See Fig. 1. In this sense the parameter 
in  is a constant. Differentiating (4) yields 

A
x′ S
 
 0dx dx vdt′ = = −   (5) 
 
Therefore, by definition,  is the velocity of the point  when observed from .  v A S
 For a special choice  (4) becomes   0x′ =
 
 x vt=   (6) 
 
the path for a point moving at velocity v , that at 0t =  coincided with the origin 

, depicted by the solid line in Fig. 1. Later on this point will be identified with 
the location of the Slave Clock (SC), introduced below. 

0x =

 So far (4) and (6) merely describe the paths of points moving according to 
generic (1). The key to defining another system of reference S ′  is the fact that the 
distance between arbitrary points moving at velocity v  remains a constant. Thus if an 
observer is attached to one of these points, all the other points will appear at rest 
relative to his position.  

Incorporating (3), the above arguments can be extended to three-dimensional 
space. Thus instead of the single path (1) one can assume the three-dimensional 
counterpart 
 
 t′ = −r r v   (7) 
 
Designating some arbitrary point to be the origin, and considering ′r  as an arbitrary 
location defines the frame of reference S ′ .  
 At this stage one cannot talk about (1) and (3), or (7), as a complete space-
time transformation of coordinates, because we are not yet in possession of the 
associated temporal transformation (2). For that reason the question of simultaneity in 
its SR context is not yet applicable. 
 The analysis of the temporal transformation (2), is more complicated and 
needs a more detailed narrative.  
 
 
4. The Temporal Transformation 

                                                 
* Of course we cannot rule out the possibility of infinite speeds and "instantaneous action at a distance" 
in general. 
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To establish the temporal transformation (2), assume a master clock (MC) located at 
the origin , transmitting a discrete sequence of tagged electromagnetic pulses 
propagating at the velocity c  in . Thus each pulse actually consists of a spiked burst 
serving as marker and an associated signal occupying part of the dead time between 
pulses, coding the MC time at which the burst was emitted. Hence “the pulse emitted 
by the MC at ” is understood to mean a pulse associated with the coding tag 

.  

0x =

t =

S

0
0t =

 The main idea here is that the SC situated at 0x′ =  is actuated by the tagged 
pulses received from the MC. The tag t′  detected by the SC is then used to establish 
the ‘official’ time 
 
 0|xt t ′=′′ ′=   (8) 
 
at the SC located at . This information is then used to synchronize the time to 
arbitrary locations in , as explained below.  

0x′ =
S ′

 As depicted by the dashed lines in Fig. 1, The -th pulse in the sequence is 
described by the world line 

n

 
 ( )nx c t t′= −   (9) 
 
i.e.,  at . In general we indicate the tag time as tnt t′= 0x = ′  and (9) is rewritten as 
 
 ( )x c t t′= −   (10) 
 
 Solving (6) and (10), yields the intersection of the lines (Fig. 1) at  
 
 0(1 / ) |xt t v c t ′=′ ′′= − =   (11) 
 
where t  is the time tag detected by the SC and ascribed as the corresponding time t′ ′′  
in  for  (later generalized for arbitrary S′ 0x′ = x′  as explained subsequently). For 
arbitrary points x′  the intersection of the lines (1) and (10) yields 
 
 (1 / ) /t t v c x c′ ′= − −   (12) 
 
showing that for paths like (1), having at 0t =  an offset position x x′= , there is an 
additional delay of /x c′  for the pulse tagged by t′  , namely the time needed for the 
pulse to cover the extra distance x′ . But instead of putting slave clocks in various 
locations x′ , detecting different tags according to (12), only the SC at  is 
considered for defining the time t

0′ =x
′′  at arbitrary locations x′ . Such a statement begs 

the question: “how is this synchronization performed?”. Obviously we have to 
compensate for the extra time delay, i.e., knowing x′ , and t′  at arbitrary points 
according to (12), the time  is assigned throughout t′′ S′  by computing 
 
 /t t x c′′ ′ ′= +   (13) 
 
Note that the for the synchronization, only  data is exploited, hence questions of the 
velocity of propagation in , or Postulate (ii), are irrelevant. 

S
S′
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Physically (11) is a manifestation of the Doppler Effect in its simplest form. It 
tells us that the motion of the SC relative to the pulses causes a delay in the reception 
time. At time  the SC already moved out a distance vt , therefore a pulse with an 
earlier tag emitted  seconds earlier, is needed for the pulse to reach the SC at 
time t .  

t
/vt c

 Pick a specific event occurring in  at space-time coordinates {S }e ex t,  (for 
brevity the coordinates themselves are referred to as the ‘event’) such that 
 
 e et x c= /   (14) 
 
i.e., this event is chosen on the dashed line identified by the tag 0 0t t′ ′= =  in Fig. 1, as 
given by (10) for 0t′ = .  Substituting (14) in (11) yields 
 
 2

0|e e e e xt t vx c t ′=′ ′′= − / =   (15) 
 
 Equation (15) relates the time et′′  at the location of the SC, which is also the 
time ascribed to all arbitrary points x′  at rest with respect to 0x′ = , i.e., all points 
defined as belonging to , to the space-time coordinates of the event {S′ }e ex t, . 
Consequently (15) provides the temporal transformation (2) for the present specific 
case. 
 Arbitrary events { }x t,  are located on different dashed lines in Fig. 1, 
satisfying (10) instead of  (14). For the same ex we now have et , shifted according to 
 
 e et t t′= +  (16) 
 
i.e., it is located on the world line of the pulse tagged by  
 
 (e e )x c t t′= −  (17) 
 
where (17) should be compared to (10) and (14). The later pulse, with its delayed tag 
t′  will also reach the SC at a later time, therefore in (15) the delay will be added to 
the two sides of the equation. Incorporating (16) we now have 
 
 2 2

0( ) |e e e e et t vx c t vx c t t x′=′+ − / = − / = +′′ ′   (18) 
 
Defining   
 
 e et t t′′ ′′ ′= +   (19) 
 
We finally have 
 
 2

0|e x e et t vx′=′′ c= − /   (20) 
 
once again recognized as (2), but now applying to arbitrary events { , }x t . The analog 
of (7) is the three-dimensional low velocity time transformation 
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 2t t c′ = − ⋅ /v r   (21) 
 
 
 
 
5. The Need for Symmetry and the Principle of Relativity 
 
So far, our narrative has been based on the existence of a preferred Lab System . 
This is par excellence a pre-relativistic notion. It served to establish (1)-(3) without 
Postulate (ii) and with a minimal appeal to Postulate (i), invoking the kinematics of 
light pulses. Once the non-Galilean time transformation (2) is established, introducing 
the rest of the SR fundamentals is straightforward. To order  inverting (1)-(3) 
yields  

S

/v c

 
 x x v t′ ′ ′= −   (22) 
 2/t t v x c′ ′ ′= −   (23) 
 ,y y z z′ ′= =   (24) 
 
showing that the privileged status of  used in the derivation of (1)-(3) was just 
temporary, since the transformation of spacetime coordinates from  to  is the 
same as from  to  with  as required by the symmetry dictated by postulate 
(i).  

S

v
S ′ S

S S ′ v′ = −

 The introduction of the γ -factor into the transformations now does require the 
second postulate and is easily assimilated by the discussion of light clocks in relative 
motions (see e.g. [1] p. 138). We then arrive at the usual Lorentz transformations 
 
 ( )x x vtγ′ = −   (25) 
   (26) 2( /t t vx cγ′ = − )
 y y′ =  , z z′ =  (27) 
   (28) 2 2 1/(1 / )v cγ −= − 2

 
We can then, as above, appeal to the symmetry between  and S S ′  to establish the 
inverse LT, involving v  and the same v′ = − γ  factor containing 2v v2′ = . The three-
dimensional analog of (25)-(28) is recast similarly to (7) and (21) 
 
   (29) 2 ˆ ˆ( ),  ( / ),  ( 1)t t t cγ γ′ ′= ⋅ − = − ⋅ = + −r U r v v r U I vv
 
where  is a dyadic (matrix) multiplying the coordinates perpendicular to  by U v γ . 
 The complete LT leads to a discussion of concepts usually arising in this 
context, such as the light cone, sub-luminal and super-luminal velocities, length 
contraction and time dilation, which will not be revisited here. 
 In order to check consistency with Einstein’s Postulate (ii), consider now the 
LT (25)-(27) in differential form 
 
 (dx dx vdt)γ′ = −   (30) 
   (31) 2( /dt dt vdx cγ′ = − )

, dy dy dz dz′ ′= =   (32) 
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Define arbitrary sub-luminal speeds according to  
 
   (33) 2 2 2 2 2 2( / ) ( / ) ( / )x y zu u u u dx dt dy dt dz dt= + + = + + 2

2 2 2 2 2 2 2( / ) ( / ) ( / )x y zu u u u dx dt dy dt dz dt′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + = + +   (34) 
 
Substitution from (30)-(32) yields 
 
   (35) 2 2 2 2 2 2 2[( ) /(1 / ) ( ) / ] /(1 / )x x y z xu u v vu c u u vu cγ′ = − − + + − 2 2

2
 
Upon assuming 2u c= , i.e., that in  the speed of a point is c , or equivalently S
 
 2 2 2

y zu u c u2
x+ = −   (36) 

 
we obtain from (34) 
 
   (37) 2 2 2 2 2 2 2[( ) ( ) / ] /(1 / )x x xu u v c u vu cγ′ = − + − − = 2c
 
So the complete LT (25)-(28) is compatible with Postulate (ii), namely if the speed is 

 in one inertial system, it is also c  in another, showing that c  is an invariant. 
Einstein [2] started with Postulate (ii) and derived the LT, which is of course 
aesthetically more elegant, but sometimes more difficult for students to assimilate on 
their first encounter with SR. 

c

 Finally, it is noted that if both velocity components perpendicular to  vanish, 
i.e. 

v

 
 0, 0y zu u= =  (38) 
 
then (28)-(30), for low velocities, leads to  
 

   (39) 
2

2

/ ( ) /( /
( ) /(1 / )

u dx dt dx vdt dt vdx c
u v vu c

′ ′ ′= = − −

= − −

)

 
and for u  we obtain u . Therefore caution must be exercised when dealing 
with such a specialized case. 

c= c′ =

 
 
6. Simultaneity And Moving Observers—An Example 
 
According to the GT, time is identical in all reference systems: I am riding my horse 
and watching the time on the town’s clock tower on the hill. Surely it is “logical” that 
the person sitting at the roadside will see the same time? We are, after all, watching 
the same clock. In hindsight, being already familiar with SR, we of course know the 
answer. Watching the time on the clock tower entails propagation of light waves, and 
unless we take into account the time retardation due to the finite speed of light 
propagation, we cannot be sure we are talking about the same time for all observers. 
The important distinction between the low velocity LT time transformation (2) and  
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the Galilean  can be appreciated by considering the following problem taken 
from [1]  

tt =′

 Two individuals S  and ′ S ′′

S

 are walking towards each other along a road each at 
a speed of  relative to the road. They cross at a site occupied by a 
stationary third observer, . All agree to set their time origin at the crossover 
point, i.e. . Near a star that lies on the line of the road, four light 
years away, a space ship at rest in the frame of  at location 

-1sm3

′= tt 0=′′= t
S x , launches a 

missile at  destined to destroy the Earth some time in the future. Calculate 
the time when the missile launch occurs in the frames 

0=t
S ′  and , stating 

carefully in each case whether it is earlier or later than in . Ignore the effects 
of gravity and ignore the rotation of the Earth. Comment on which, if any, of the 
earthbound observers can actually discuss the Earth’s fate when they meet. 

S ′′
S

 
Assume that (respectively ) moves with velocity ( ) 
relative to . With , m and 

, we obtain From (2) 

S ′ S ′′
4×=

-1sm3+=v
8 8.310 ×=×

-1sm3−=v
1610S

-1
0=t 3606024365 ××××x

3.1sm3±=v −=′t s and 3.1+=′′t s. Thus in S ′ (respectively 
) the missile is launched about one second before (after)S ′′ S ′ ( S ′′ ) meets . The 

result illustrates the relativity of simultaneity occurring between frames moving at 
non-relativistic speeds. In the frame associated with S

S

′ , the missile is launched before 
the individual at the origin of meets his counterparts in  and S ′ S S ′′ . However, since 
it would take at least four years for the information that the missile has been launched 
to reach , he cannot inform the other individuals about the fate of the earth when 
they meet.  

S ′

 
 
7. Summary and Concluding Remarks  
 
The teaching of special relativity poses special challenges. In many undergraduate 
physics courses, SR is taught very near the beginning (in one author’s institution it is 
taught in the first semester ). Whilst many students enjoy the provocative challenges 
that are immediately encountered with the traditional ‘two postulates’ approach (time 
dilation, length contraction, twins paradox etc.), others may benefit from a more 
seamless construction building on what they know from Newtonian mechanics. It is to 
these latter students that the approach developed in this paper is directed. A skeletal 
form of the First Postulate is used in assuming only that signals propagate according 
to simple kinematics, and that the time information carried  by such signals can be 
freely exchanged between frames. The presentation is necessarily one-sided initially, 
giving the Master Clock in the Lab Frame preferred status. However, as we have 
shown, this asymmetry is easily removed once the transformations (1)-(3) have been 
obtained.  The time transformation of (2) is the first departure from many student’s 
intuition, and we have therefore presented an alternative narrative to arrive at this. 
Only once the low-velocity transformations are developed is the second postulate 
invoking the invariance of the speed of light introduced, and the full LT derived in the 
standard way. The symmetry between frames can then be used again to show that the 
full LTs are consistent with the first postulate.   
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Figure Captions: 
 
Figure 1: Spacetime diagram illustrating the motion of the SC (6) and the tagged light  
 pulses. 
Figure 2: Spacetime diagram illustrating the derivation of the time transformation. 
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Abstract -  New fractional boundary conditions (FBC) on plane boundaries are introduced. 
FBC involve fractional derivatives of the tangential electric field components. FBC describe 

intermediate boundary between perfect electric conductor (PEC) and perfect magnetic conductor 
(PMC). FBC are studied by the example of problem of diffraction of E-polarized electromagnetic 

field by a strip. The method of solving this problem is presented. It is shown that “fractional strip” 
has scattering properties similar to the well-known impedance strip. The relation between the 
fractional order and the value of impedance is derived.  

 
1. INTRODUCTION 

In this paper we analyze application of fractional boundary conditions (FBC) to diffraction by strip.  
Following the ideas of fractional paradigm in electrodynamics proposed by N. Engheta [1] we introduce 
FBC as intermediate case between well-known perfect electric conductor (PEC) and perfect magnetic 
conductor (PMC): 

( ) 0D U rν = ,    r S→                             (1) 

where the fractional order (FO) ν  is assumed to be between 0 and 1. Dν  in (1) denotes the fractional 

derivative of Riemann-Liouville type [2] and is applied along direction normal to the surface S . In 

diffraction problems the function ( )U r  denotes tangential component of electric or magnetic field. PEC 

and PMC boundaries are obtained from FBC (1) when FO ν  equal to 0 and 1, respectively.  
Our interest is to study scattering properties of the two-dimensional strip with FBC on it. We refer a 

strip defined FBC as “fractional strip” in this paper. We will consider E-polarization case. The method of 
solving this problem will be presented later in this paper. 

To understand properties of the boundaries described by FBC and relation to known boundaries we 
consider reflection problems first. It can be shown that infinite impedance boundary [3] with the value of 
impedance η  can be simulated as boundary with FBC on it, i.e. 

0, 0
ky z

D yEν

−∞
= → +          (2) 

FBC result in the reflection coefficient ( 1) iR eν πν
ν = − − = − . Comparing the coefficients for impedance and 

fractional boundaries we get the equation which relate FO ν  and the impedance η : 
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Keeping in mind the relation (3) for infinite boundaries we can expect that “fractional strip” of finite 
width has scattering properties similar to an impedance strip  if the FO ν  is related to impedance η as in  

(3). To compare “fractional” and impedance strips we independently solve both diffraction problems and 
compare physical characteristics such as cross sections and surface current densities. 
 
2. PROBLEM FORMULATION 

Consider a two-dimensional problem of electromagnetic wave diffraction by a strip of width 2a  
located at the plane 0y =  and infinite along the axis z . An incident plane wave is described by the 

function 
2

0 0( 1 )( , ) ( , ) i k x yi iE x y zE x y ze− α + −α= =
r r r , where 0 0cosα θ= ,  0θ  is the incidence angle.  

Boundary conditions are FBC (1) with the surface {( , , ) : 0, }S x y z y a x a= = − < < : 

0( , ) | 0ky z yD E x yν
−∞ = = , ( , )x a a∈ −      (4) 

Here for convenience the fractional derivative is applied with respect to the non-dimensional variable ky . 

The function ( , )zE x y denotes the z-component of the total electric field ( , ) i s
z z zE x y E E= +  — a sum of the 

incident plane wave ( , )zE x y  and the scattered field ( , )s
zE x y . 

The solution ( , )zE x y  should satisfy the following conditions:  

- ( , )zE x y  satisfies the Helmholtz equation everywhere outside the strip: 
2 2

2
2 2( ) ( , ) 0zk E x y

x y
∂ ∂

+ + =
∂ ∂

; 

- ( , )s
zE x y  satisfies the radiation condition at infinity: lim ( ) 0

s
sz

r z

E
r iE

r→∞

∂
− =

∂
, 2 2r x y= + ; 

- the  Meixner’s condition on the edges of the strip; 
- ( , )zE x y  satisfies FBC on the strip surface (4). 
 
3. SOLUTION 

Utilizing the fractional Green’s theorem [4] we present the scattered field via the fractional 
Greens’ function Gν  [5, 6] 

1( , ) : ( ') ( ', ) '
as

z a
E x y f x G x x y dx−ν ν

−
= −∫     (5) 

where 1 ( )f xν−  is an unknown function which we name “fractional potential density”. FGF Gν  is 

expressed in two-dimensional case as 
2

/ 2
[( ') | | 1 ] 2 ( 1 ) / 2( ', ) (1 )

4

i
ik x x ye

G x x y i e d
πν

ν α α να α
π

±
∞ − + − −

−∞
− = − −∫ . 

Following the method presented in [5] we use the Fourier transform 
11 1

1
( ) ( ) iF a f a e dν ν εαξα ξ ξ− − −

−
= ∫  of the 

fractional potential density 1 ( )f xν− : 
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2
/2

1 [ | | 1 ] 2 ( 1)/2( , ) ( ) (1 )
4

i
s i k x y
z

e
E x y i F e d

πν
ν α α να α α

π

± ∞ − + − −

−∞
= − −∫ , kaε =   (6) 

Satisfying the function ( , )zE x y  FBC (4) we get integral equation (IE) [5]: 

1 2 1/2 /2(1 ) 2 /2 0
0

0

sin ( )1 sin ( )
( ) (1 ) 4 (1 )

( ) ( )
iF d eν ν π ν ν ε β αε α β

α α α π α
ε α β ε β α

∞ − − −

−∞

+−
− = − −

− +∫   (7) 

In order to solve the IE we represent the density function 1 ( )f x− ν  by a uniformly convergent series [5] 

and the Fourier transform 1 ( )F ν α−  is expressed as 

1

0

( )2( ) ( )
( 1) (2 )

n n
n n

n

JF i fν ν ν ν
ν

εαπα β
ν εα

∞
− +

=

= −
Γ + ∑     (8) 

where ( )nJ ν εα+  denotes Bessel function.  
As a result of this presentation the edge conditions are satisfied in form 

1 2 1/2( ) ((1 ) )f x O xν ν− −= − , 1x → ±     (9) 

Substituting the series (8) into IE (7) we obtain a system of linear algebraic equations (SLAE) in 

respect to the coefficients nf
ν . SLAE is solved with the method of reduction, after that the fractional 

density 1 ( )f x− ν  is evaluated and other physical characteristics can be obtained as series in terms of the 

found coefficients 
nf
ν . 

Analyzing IE (7) for fractional strip it is seen that for the special case of 0.5v =  the kernel 
becomes simple and the IE can be solved analytically for any value of kaε = :  

0.5 2 1/4 / 4 0
0

0

sin ( )
( ) 4 (1 ) iF i e π ε α α
α α

α α
+

= − −
+

    (10) 

Another problem we consider in this paper is diffraction by impedance strip. Solution to this  
problem was given in [7]. In order to compare scattering properties of fractional and impedance strips we 
first consider surface currents existing in both cases. It can be shown that an E-polarized plane wave 
incident on a fractional strip excites two surface currents – electric and magnetic: 

1 2 2( ) ( ) (1 )
4

2 cos( )2
ik xe

z F e dj i
ν

ν αν ι α α α
π

πν
+∞

−

−∞

− −= ∫ , (11) 

1
1 2 2 2( ) ( ) (1 )

4
2sin( )2

ik xm
x F e dj

ν
ν αν ι α α α

π
πν

+∞
−−

−∞

− −= ∫              

Similar current distributions are observed in the diffraction on an impedance strip : magnetic current is 
directed along the axis z and electric current is along the axis x. 

We introduce the ratio ( )xζ  for the fractional strip: 
( )

( )

( )
( ) : ,     ( , )

( )

m
x

e
z

j x
x x a a

j x

ν

ν
ζ = ∈ −     (12) 
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Figure 1. Monostatic RCS versus incidence angle for  
ε π= . (1) fractional strip with 0.25ν = ; (2) impedance 
strip with impedance η  corresponding to 0.25ν = ; (3) 

fractional strip with 0.75ν = ; (2) impedance strip with 
impedance η  corresponding to 0.75ν = . 

Figure 2. Monostatic RCS versus incidence angle 
for 2ε π= . (1) fractional strip with 0.25ν = ; 
(2) impedance strip with impedance η  

corresponding to 0.25ν = ; (3) fractional strip 
with 1ν = ; (2) impedance strip with impedance 
η  corresponding to 1ν = . 

 
Figure 3. | |zE  distribution for frequency parameter 

ε π= , incident angle 0
0 90θ =  and FO 0.5ν = . 

 
Figure 4. Magnetic and electric current densities 
for the same parameters as on Fig. 3. 
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Figure 5. Distribution of real part of zE  for ε π= , 

0
0 90θ =  and 1ν = . 

 
 

 
Figure 6. Magnetic current density for the same 
parameters as on Fig. 5. Electric current density 
equals to zero. 

It should be noted that the ratio ( )xζ  may depend on the coordinate x  while the ratio ( ) ( )( ) / ( )m e
x zj x j xν νη =  

for impedance strip is a constant η by the definition. 
However, for one special value 0.5ν =  the IE can be solved analytically [5] and the function ( )xζ  is a 

constant for any value of kaε = : 1
0.5 0( ) | sinx i −

ν =ζ = − θ  [6]. For the physical optics (PO) approximation 

( kaε = → ∞ ) we can use asymptotic formulas for the integrals in equation (12) and the ratio ( )xζ  is 

expressed analytically 1
0( ) ~ sin tan( /2)x i −ζ − θ πν = η . For finite boundaries in case of PO approximation 

we get exactly the same relation between the fractional order and the impedance (3). For arbitrary value of  
ε  the ratio ( )xζ  can be eva luated numerically. The relation for the currents proves the fact that the 
fractional boundary conditions are similar to the impedance boundary conditions. The closer ( )xζ  to the 
constant for a x a− < <  the more the fractional boundary has properties of an impedance boundary. 
 
4. NUMERICAL RESULTS 

In the far -zone (kr → ∞ ) the scattered field is expressed as ( , ) ( ) ( )r
zE x y A kr ? ν ϕ≈ , where 

42( ) ikr iA kr e?r
π

π
−= , 1( )

4
( ) (cos )sini i? Fνν ν νϕ ϕ ϕ−±= −                         (13) 

The upper sign is chosen for the values [0, ]ϕ π∈ , and the lower sign for [ ,2 ]ϕ π π∈ . The function 

( )? ν ϕ  denotes the radiation pattern (RP) of the scattered field and can be expressed via the coefficients 

nf
ν  found by solving SLAE. 

 Figures 1 and 2 show the comparison of the monostatic radar cross section (RCS) for different 
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values of the fractional order ν  and the frequency parameter kaε = .  The results for 0ν =  and 1ν =  
are in good agreement with the results obtained earlier [7]. All the curves for the monostatic RCS for all 

values of ν  have similar behavior and have the same value for the incident angle 0
0 90θ = . All the curves 

have minimums at the same values of 0θ . Figures 3 and 5 show field distribution for the fractional 

scattered field and corresponding densities of electric and magnetic currents are plotted on figures 4 and 6, 
respectively. 
 
5. CONCLUSIONS 

Scattering properties of the fractional strip defined by fractional boundary conditions has been 
analyzed. One important feature of the integral equations for the “fractional strip” is the fact that integral 
equation can be solved analytically for one special intermediate value of the FO equal to 0.5. 

Detailed comparison analysis of the physical characteristics of the scattered fields for both 
fractional and impedance strips is presented. The fractional boundary supports both electric and magnetic 
currents. The analytical relation between the fractional order and the value of impedance is derived in 
cases of infinite boundaries and physical optics approximation. Similar to impedance boundary the ratio of 
surface current components is introduced for the strip with FBC. It is shown that in a wide range of input 
parameters the physical characteristics of the “fractional strip” are similar to the impedance strip. 
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Some inverse scattering problems for nonlinear
Schrödinger operator in 2D

Serov V.S.

Department of Mathematical Sciences, University of Oulu,
P.O. Box 3000, FIN-90014, Oulu, Finland, vserov@cc.oulu.fi

This work deals with the nonlinear Schrödinger equation in two dimensions

−∆u +
m∑

l=0

αl(x)|u|lu = k2u, k ∈ R. (0.1)

Form (0.1) appears quite naturally in applications. It includes the linear case (m = 0) and the
basic nonlinearities of cubic and cubic-quintic type. The latter two equations can be met, e.g.,
in optics. In addition to these cases, we allow here any finite combination of such powers of
nonlinearity.

In direct scattering theory one considers the scattering solutions of (0.1), that is the solutions
of the form

u(x, k, θ) = u0(x, k, θ) + usc(x, k, θ), (0.2)

where u0(x, k, θ) = eik(x,θ) is the incident plane wave with direction θ ∈ S1-unite sphere,
and usc(x, k, θ) is the scattered wave. In inverse scattering problems we are asked to extract
information about the coefficients of Eq.(0.1) from the knowledge of the scattered wave at large
distances, i.e., from the so called scattering amplitude A(k, θ′, θ).

For the functions αl(x) from Lp
loc(R

2) with some special behaviour at the infinity we prove
an analog of the well-known Saito’s formula for this nonlinear Schrödinger operator

lim
k→+∞

k

∫
S1×S1

e−ik(θ′−θ,x)A(k, θ′, θ) dθ dθ′ = 4π

∫
R2

h(y)

|x− y|
dy, (0.3)

where h(y) =
∑m

l=0 αl(y).
This formula allows us to prove the uniqueness theorem of the reconstruction of some special

combinations of the unknown functions αl(x).
The properties of the scattered wave and the definition of the scattering amplitude allow us

to introduce the inverse Born approximation qB as

qB(x) := F−1(A(k, θ′, θ)). (0.4)

Next we study the following problem: To estimate the smoothness of the terms from the
Born approximation. And for the function h from Lp

loc(R
2) the main result here is:

qB(x)− h(x) ∈ H t
loc(R

2). (0.5)

1
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Resistance Related to a Substrate Backed by a Metallic Plate  
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      Abstract - The resistance associated with a nonparallel current flow in a substrate 

backed by a metallic plate is referred to as the spreading resistance of the substrate. 
The resistance in question, say R, can be defined either by the ratio W/I2 or V/I, where 
W stands for the heat power dissipated inside the substrate, I is the total current 
entering into the substrate through the source plate while V denotes the potential 
difference between the source plate and back plate. The computation of R is first 
reduced into solution of dual integral equation of the first kind whose kernel is weakly 
singular and then solved numerically by a method which is based on the regularization 
in the sense of Tikhonov.  

 
1. INTRODUCTION 
     The concept of spreading resistance has rather important issues in semiconductor technologies. For 
example, the heat flow between an active transistor (or integrated circuit) and an external heat sink 
makes the thermal spreading resistance to have important issues in the device carrier. 
     In spite of its importance, the works devoted to rigorous analysis of the spreading resistance are 
very few in the open literature because of the non-existence of the general theory to solve the mixed 
boundary-value problems related to this kind of a problem. To the best of our knowledge, the earlier 
work devoted to the rigorous analysis of the spreading resistance has been published by Kennedy [1] 
in 1960. In this study Kennedy had considered a finite cylindrical volume under the influence of a 
constant flux through a disc and defined the spreading resistance in terms of the maximum potential 
on the disc. Although the results of Kennedy are still used as reference in subsequent works, he had 
not formulated the problem rigorously as a mixed boundary-value problem. The first rigorous 
formulation of the problem as a mixed boundary-value problem was presented by Brooks and Mattes 
[2] in 1971. But, unfortunately, this work contains an obvious mathematical error which makes the 
results obtained there completely invalid. In a recently published interesting work [3] the problem is 
reduced to the same dual integral equations considered in [2] and solved by a method developed by 
Tranter [4], which aims to find the solution as an infinite series of the first kind Bessel functions of 
orders (2n+1/2). But the determination of the coefficients of this series requires very hard 
computations. 
     The aim of the present work is to reconsider the same problem in a slightly different manner, and 
to reduce it first into an integral equation of the first kind and, then, by Tikhonov regularization 
method, into an equation of the second kind. An approximate solution to the latter, with high 
accuracy, can be obtained rather easily.  
 
2. FORMULATION OF THE PROBLEM 
     A constant current I enters into a conducting slab of width d (substrate) trough a metallic circular 
disc of radius a (see Fig.1.). The problem consists of finding the effect of the geometrical and 
physical parameters such as a, d , ε, µ and σ on the resistance R observed by the source. Here  ε, µ 
and σ are assumed to be constant and signify the permittivity, permeability and conductivity of the 
substrate, respectively. The constitutive parameters of the half-space existing on the upper part of the 
substrate are, as usual, ε0, µ0 and σ = 0. The bottom of the substrate is coated by a metallic plane. The 
current entering into the substrate spreads there to excite rotationally symmetric stationary 
electromagnetic fields which are  by the following equations: 
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                                   curlH = J,    curlE = 0,   divD = 0,   divB = 0.                                  (1a,b,c,d) 
 
Here E, H, D and B stand for the electric field, magnetic field, electric displacement and magnetic 
induction, respectively, while J refers to the density of the current. Because of the rotational 
symmetry, all these quantities are functions of the polar coordinates r and z (independent of the 
angular coordinate φ).  
 
 
 
 
 
 
   
 
 
 
 
                                       Fig.-1. Geometrical structure of the problem 
 
The expressions of the current density J is given by    
                     

                                            J(r,z) = 






∈

>−=

  (-d,0).z                            ,

0z         ,)r(
r
1

2
I

E

eJ

σ

δ
πν z                                            (2) 

 
In the region z > 0 for the φ-component of the magnetic field H, say Hφ ,  from (1a) and (2) one gets 
 

                                        0H
z

=
∂
∂

φ ,          
1 I 1

(rH ) d(r)
r r 2p rφ

∂
= −

∂
 .                                        (3a,b) 

 
By integrating (3b) on a disc with center at (0,0,z) and radius r one gets  
 

                                                         Hφ(r) = 
r 2p

I
−  .                                                                          (4) 

 
It is significant to observe that in the region z>0 Hφ is completely known beforehand and does not 
be affected by the substrate.  
     From (1b) and (1c) it is obvious that the electric field E in this region is determined by the 
relation E = - gradV(r,z) where V(r,z) is the scalar potential function which satisfies the well-
known Laplace equation  

                                                   ∆V = V
z

V)
r

(r
rr

1
2

2

∂
∂

+
∂
∂

∂
∂

= 0.                                                      (5) 

 
     Now consider the region -d<z<0. The electric field E in this region is obtained again by the 
relation E = - gradV(r,z) and here V(r,z) satisfies also the same equation given in (5). (1a) and (2) 
show that Hφ depends on both r and z and satisfies 
  

                                             H s V
z rφ

∂ ∂
=

∂ ∂
,       

1
(r H )  s V

r r zφ
∂ ∂

= −
∂ ∂

.                                 (6a,b) 

 
With the elimination of V between the equations in (6a,b) one obtains  
 

-d 

O 
a - 

a 

I 

 z 

 x 
ε, µ, 
σ

ε0, µ0  
σ = 0 

V = 0 

V0 
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2

2

1
(rH ) H 0

r r r zφ φ

∂ ∂ ∂  + = ∂ ∂ ∂ 
      .                                                      (7) 

 
The functions V(r,z) and Hφ(r,z) are to be determined through (4), (5) and (7) by considering also the 
following boundary conditions: 
 
                                V(r, - d) = 0,       r∈[0 , ∞)                                                                                  (8a) 
 
                                V(r, - 0) - V(r, + 0) = 0,        r∈[0 , ∞)                                                               (8b) 
 
                                V(r, 0 ) = V0 = constant (to be determined! ),       r∈[0, a]                                 (8c) 
 
                                Hφ(r,- 0) - Hφ(r, + 0) = 0,        r∈[a , ∞).                                                             (8d) 
      
                                | V(r,z) | < ∞       as z → ∞                                                                                  (8e) 
 
It is worthwhile to remark that the boundary conditions given above are resulted from the perfect 
conductance of the metallic plates and the non-existence of the induced dipoles and surface currents 
on the interface z = 0. In connection with (8c) notice also that the potential function V(r,0) is 
continuous for r∈[0,∞) because otherwise dipoles should exist on the cylinder r = a.  
 
3. SOLUTION OF THE PROBLEM 
     Since the spectrum of the problem is continuous, in the regions z>0 and –d<z<0 the expressions of 
the solutions for the Laplace equation given by (5) can be obtained through the classical method of 
separation of variables and written as follows: 
 

                                      V(r,z) = a z
0

0

A(a)e (ar)daJ
∞

−∫ ,       z > 0                                                        (9) 

and  

                            V(r,z) = a z z
0

0

[B(a)e +C( ) e ]J (ar) daαα
∞

−∫ ,        z∈(-d , 0).                                 (10) 

Here α stands for arbitrary separation parameter while J0(αr) is the usual Bessel function. In (9-10)   
A(α), B(α) and C(α) denote the spectral coefficients to be determined through the boundary 
conditions (8a-d). 
     Similarly, the solution of the equation (7) which gives rise the φ-component of the magnetic field 
H for z∈(-d , 0) can be expressed as 
 

                            Hφ(r,z) = σ a  z z
1

0

[- B(a)e ( )e ]J (ar) daC αα
∞

−+∫ ,                                                   (11) 

where (7a) being taken into account. 
     By considering the boundary conditions (8a,b) and the fact that that the Hankel transform  
 

                                                         f̂ (α) = ?
0

f(r) r J (a r) dr
∞

∫                                                          (12a) 

 
is invertible with its inverse [5] 

                                                   f( r) =  ?
0

f̂ ( ) J (a r) dα α α
∞

∫ ,                                                  (12b) 
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the potential function V(r,z) and the magnetic field component Hφ(r,z) are written as follows: 
 

                              V(r,z) = 

az
0

0

0
0

A(a)e J (ar)da  ,                         z 0

Sinh[a(z d)]
A(a) J (ar) da ,     z [-d,0],

Sinh(ad)

∞
−

∞


≥




+ ∈

∫

∫
                                 (13) 

 

                             Hφ(r,z) = 

1
0

I
,                                                         z 0

2pr
Cosh[a(z+d)]

 A(a) J (ar) da ,     z (-d,0).
Sinh(ad)

σ
∞

− >

− ∈


∫
                          (14) 

 
These expressions show that the solution of the problem is reduced to the determination of the 
coefficient A(α). In order to determine this coefficient one inserts (13) and (14) into the remaining 
boundary conditions (8c,d) and gets 
 

                                         0 0
0

A(a)J (ar) da V constant
∞

= =∫ ,      r∈[0, a]                                      (15a)               

 
and 

                                         1
0

I
A( ) Coth(ad) J (ar)da ,     r a

2p r
α

σ

∞

= ≥∫ .                                      (15b) 

 
It is obvious that (15a,b) constitutes a pair of dual integral equations which will permit us to find an 
explicit expression of the unknown function A(α) whenever the right-hand sides are known. It is 
worthwhile to remark that in (15a) the constant V0 is also an unknown which has to be determined. 
     For this purpose, by considering (14) and (15b) one writes    
 

                               ∫
∞













∈−−

≥

=
0

1

.],0[),0,(
1

,
2

)()()(

arrH

ar
r

I

drJdCothA

φσ

πσ
αααα                              (16) 

Now let us multiply first (16) with r and then differentiate the obtained term with respect to r to get  
 

                              ∫
∞







∈

≥
=

0
0

.],0[,)(

,0
)()()(

arr

ar
drJdCothA

φ
ααααα                                              (17) 

By considering (6b) or (13) it is obvious that  )0,()0,()( −−=−
∂
∂

= rErV
z

r zφ . From (17) one writes 

                                              A(α) = Tanh(αd) ∫
a

0
0 dr r) (aJ (r)r φ ,                                               (18)        
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with (12a) and (12b) being taken into account. Finally, by inserting (18) into (15a) one obtains the 
integral equation  
 

                                     ardrK
a

≤=∫ ,1),()(
0

λλλλψ                                                   (19a) 

with 

                                             K(r,λ) = 0 0
0

Tanh(a d) J (a r) J (a ?) da
∞

∫                                             (19b) 

and 
 
                                                      ψ(λ) = φ(λ) / V0          ,         r∈[0, a] .                                                                       (19c) 
 
     After having determined the expression of ψ(λ) from (19a), it is an easy matter to compute the 
value of V0 through (15b), (18) and (19c). Indeed, by inserting the expression of the coefficient A(α) 
given by (18) into (15b) and considering also (19c) one gets  

 

                                                         ∫





=

a

d
I

V
0

0 )(
2

λλλψ
πσ

.                                                    (20) 

 
Here, it is worthwhile to notice that to obtain this value of V0 the relation given by  
 

                                              0 1
0

J (a ) J (ar) da 1/ rλ
∞

=∫   ,    for  0<λ<r                                    (21) 

has also been considered [6]. 
     The power dissipated inside the substrate as heat energy is defined in [7] by 
 
                                                                W = σ ∫∫∫

< 0 z
dv EE. .                                                             (22a) 

 
As explained in details in [8] this heat energy can also be expressed as 
 
                                                                  W = I V0                                                                                                                     (22b) 
 
If we define the spreading resistance R so that  
 
                                                                  W = R I 2                                                                          (22c) 
 
then from (22b) one gets  

                                                                  R = 
I

V0                                                                            (23a) 

 
by considering (20) the spreading resistance R given by (23a) can also be written as 
                                 

                                                                 R = 

∫ λλλψπσ
a

0
)d(  2

1
.                                                    (23b) 

 
     The expression given by (23a) shows that the resistance of the configuration modeled by Fig.-1, 
defined through the heat dissipation inside the substrate, can also be interpreted as to be the resistance 
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seen from the source (i.e. the ratio V0/I) and, consequently, from (23b) it is obvious that the 
computation of this resistance requires the determination of ψ(λ) from (19a). 
     In order to solve the integral equation (19a) let us rewrite first the kernel of this integral equation, 
which is given by (19b), as follows: 
 

                             K(r,λ) = 0 0 0 0
0 0

{Tanh(ad)-1}J (ar) J (a?)da  J (ar) J (a?)da
∞ ∞

+∫ ∫ .                       (24) 

 
It is obvious that the integrand of the first integral appearing in (24) decreases as O{exp(-2αd)/(αd)} 
as α→ ∞ . Therefore this integral can be computed numerically with very high accuracy by using 
standard methods. The second integral in (24) can be expressed as follows [6] : 
 

                                     0 0
0

J (ar) J (a?)da
∞

∫ = )
?

r
 1; ,

2
1

 ,
2
1

 F(
?
1

2

2
,      r < λ ,                                      (25) 

 
where F(a,b,c;z) stands for the usual hypergeometric function. Since the constant parameters of the 
hypergeometric function taking place in (25) satisfy the relation a+b = c, for λ→ r it exhibits a 
logarithmic singularity [9]. Since {log(λ - r)}∈L [r- ε, r + ε) for all ε > 0 this singularity will not 
cause any problem in computing the integral in (19a).  
     The analysis made above shows that the kernel K(r,λ) of the integral equation (19a) is weakly 
singular and, hence, defines a compact operator [10]. Since the inverses of compact operators are never 
bounded [10], (19a) constitutes an ill-posed problem [10]. Therefore, to obtain an approximate 
expression of the solution, one has to use a regularization technique. Here the well-known Tikhonov 
regularization technique [10] which aims to reduce the solution for an equation of the form Au - f = 0 to 
that of the following equation of the second kind: 
 
                                                              ßu + A*Au = A*f                                                                    (26) 

 
is preferred. In (26) A* denotes the conjugate operator to A and ß>0 is referred to as the regularization 
parameter whose appropriate value is determined by inspection such that an acceptable relative error 
occurs.  
     In the case of (19a), one has 
 
                                           u ≡ u(λ) = λψ(λ)          ,          f ≡ f(r) = 1                                               (27a) 
 

                               ∫=
a

durKu
0

)(),( λλλA         ,        ∫=∗
a

drrrK
0

)(),( ϕλϕA                                        (27b) 

                                   
with K(r,λ) being given by (19b). Thus the regularized second kind integral equation which we have 
to solve numerically is as follows: 
 

                                 ∫ ∫ ∫=+
a a a

drrKdrdurKrKu
0 0 0

),()(),(),()( ληηληλβ .                                   (28) 

 
     Some values of R (normalized as Raσ) computed by this method are presented in Table-1. The 
values of regularization parameter ß were chosen to secure a relative error which is less than 0.015.  
In Table-1 one gives also the values of the same quantity computed by [3]. As it is seen obviously, the 
values obtained by two methods are very close to each other.   
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d/a Raσ  

computed by (23b) 
ß Raσ  

computed by [3] 
10000 0.24943 0.00175 0.24999 
1000 0.24902 0.00152 0.24989 
400 0.24848 0.00125 0.24972 
100 0.24794 0.00105 0.24889 
10 0.24374 0.00100 0.23899 
2 0.20111 0.00060 0.19747 

 
Table-1.  Computed values for the normalized spreading resistance (Raσ) 

 
4. CONCLUSIONS  
     From the analysis made above one concludes that the exact computation of the spreading 
resistance R which is defined inside a substrate by the ratio R=V0/I requires the solution of an integral 
equation of the first kind with a weakly singular kernel. Since this integral constitutes an ill-posed 
problem, the difficulties in finding numerical results can be avoided by using the well-known 
Tikhonov regularization technique. An illustrative application shows that the present method is 
applicable rather easily and quickly. A comparison of the results obtained by the method established 
here and that proposed in [3] shows that the accuracy of the new method is very good.  
          When the substrate is composed of two or more layers of different constitutive parameters as 
considered in [11], the kernel functions of the resulting set of dual integral equations become much 
more complicated, which makes the other methods very difficult and complex to apply.  But the 
present method, which is based on regularization concept, seems to be still applicable by 
straightforward generalizations. A work in this direction is still running. 
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Abstract The author showed in the report [1] that infinite sequences of zeros of the scattering pattern 
Π(θ) appear on the complex plane z = exp (iθ) as a consequence of the wave scattering from polygonal 
cylinders, some of which correspond to the null points of Π(θ) measured in the far zone. The sequences 
start from the unit circle on the complex plane and finally terminate at the point of infinity. Knowing the 
exact distributions of these zeros leads to a complete description of scattering including geometrical 
scattering (GS) and edge-scattering (ES). The GS part will mainly be described by the zeros that 
distribute near the unit circle. The remaining zeros that also appear as infinite sequences can describe a 
static behavior of the field, which make the convergence of solutions very slow. The principal idea in this 
report is to constitute non singular solutions by removing from the scattering all zeros that distribute 
near the point of infinity. The truncated pattern can be represented in terms of two polynomials of degree 
n and these polynomials are exactly determined from the measured pattern Π(θ) in real space.   
         
1. Introduction 
 
     Mathematical expressions for waves in scattering problems, if rigorous, have 
analytic singularities at local points irrespective of their operating frequency. This 
situation arises from static nature of the fields involved in high-frequency ray fields, 
which makes edge scattering or edge diffraction extremely difficult to solve. The main 
reason is mathematical difficulty in solving the problem when we rely on the familiar 
mathematical tools such as special functions, complex analysis, Fourier integrals and 
so on. The circumstances are the same in the early report [1] in which the structure of 
the fields was discussed in terms of the locations of zeros of the spectrum amplitude 
(the radiation pattern) over the complex spectral plane. The present report describes an 
attempt to eliminate singularities from the distribution of zeros on the complex plane.  
     Let us start from the spectral theory of scattering and let us represent any kind of 
two-dimensional waves as a sum of plane waves propagating in the directions of 
complex angles. A complete expression for the scattering of EM waves has to invoke a 
complex integral of the plane wave spectrum over the complex plane.  
 

              u(z,ζ) = i Π(θ '

− i∞ −π / 2+α2

+ i∞+ π / 2+α1

∫ )e− ikr cos(θ −θ ' )dθ '                      (1) 

where 

    z = x + iy      ζ = x − iy   and   1 2arg π/2      arg π/2z α ζ α− < + <      (2) 

     The amplitude of plane wave spectrum appears explicitly in the far zone (kr >> 1) 
far away from the source. 
 
 

                 
 
u(z,ζ) � π i 2

π kr e−ikr+iπ
4 Π(θ )                           (3) 
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The spectrum amplitude Π(θ) in the real range of angles between 0 and 2π may 

therefore be called the radiation pattern.  Analytic extension (analytic continuation in 
mathematical terminology) of the radiation pattern to the complex space provides us a 

full expression for the rigorous solution u(z,ζ). Singularities may in this case arise from 

the infinite zeros distributed near the point of infinity on the complex plane z = exp(iθ). 

Fortunately, they are determined from the parameters of edge structure of the obstacle, 
which are exactly known data to be used. Subtraction of these known data from the 
spectrum amplitude is the regularization of scattering as referred in this report. 
 

2. Factorization of the Spectrum Amplitude Π(θ) 

 
    The general theory of two-dimensional scattering that was developed for 

N-polygonal cylinders [1][2] suggests that the spectrum amplitude Π(θ) has an infinite 

number of zeros that appear over the whole complex plane as shown in an example of 
Fig.1 and can thus be separated into the two groups, the group “+” of the zeros 

distributed outside the unit circle and the group “−” of those inside the unit circle. The 

spectrum amplitude can now be factorized into a product of the form 

                  Π(θ ) = ψ + (z) ψ − (1/z)   with z = eiθ                     (4) 

where ψ +(z) and ψ −(z) are entire functions that are mathematically regular or analytic 

over the entire complex plane. All zeros for ψ +(z) and ψ −(z) are assumed to be located 

outside the unit circle [2]. These two analytic functions are closely related with each 
other when the value of z tends to infinity. Thus we are able to expect the locations of 

zeros of ψ +(z) from ψ −(z) in the neighborhood of the point of infinity [2].  By 

substituting Eq.(4) into Eq.(1), we have1 
 

u(z,ζ) = ψ + (t) ψ −(1
t ) 

−i ∞ exp(iα2 )

+i 0 exp(iα1 )

∫ e
−i k

2
( z

t
+ζt ) dt

t                 (5) 

     The points of t = 0 and t = infinity over the complex t-plane in Eq.(5) are 

singular points of ψ +(z) and ψ −(1/z) as well as those of the exponential function. The 

overall singularities may arise from the form of zαeβ z where the algebraic growth at 

zero and infinity will be diminished by the rapidly decaying exponential factor. The 

integration of Eq.(5) can thus be carried out along the path.  If ψ +(z)ψ −(1/z) is  
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       Fig.1  Zeros of the spectrum amptitude Π(θ) on the complex plane [1] 

expanded into a Laurent series at z = 0 (...a−2z−2 + a−1z−1 + a0 + a1z + a2z2 +..... ), then 

the expression for u results in a series expansion in terms of outgoing cylindrical waves. 
The finite series obtaind from the finite sum by means of truncation is an approximation 
to the exact solution if the remaining sum is negligible. However, in most cases, it is not 
so small even if the major terms are adequately summed up. This is because the 
remainder contains significant information on singular behaviors of waves at the edge 
points and thus it makes the convergence of the series rather week. To cope with the 
difficulty, we need an idea something like the inversion technique given in the literature 
[6][7]. 
 
3. Regularization of the Scattering   
 
     We consider the form of  
              ψ ± ( z) = ψ n

±(z ) ψ εn

± ( z)                                   (6) 

where the subscripts n and εn denote truncated and corrected, respectively. The 

truncated series of the entire function, which is a polynomial of degree n, is 
represented by the finite product 
 
-------------------------------------------- 
Footnote 1: For a half-plane diffraction problem, the asymptotic theory is discussed to evaluate the 

edge-diffraction by means of the spectral integral given above [3]. The present theory may also be 

applicable to the diffraction problems where we must assume  

( ) ( ) /( )± ±→ − specularz z z zψ ψ  

so as to produce the specular reflection in the illuminated region or the cancellation of the incident field 

in the shadow region whenever the integral path in Eq.(5) runs across the pole [4][5]. 

 

plane H wave

30°

25°

50°

50°

25°

30°

(PO: 51.3°)
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           ψ n
+(z ) = (1− z/z1

+)(1 − z /z2
+ ) ⋅ ⋅ ⋅(1 − z /zn

+ )  

           ψ n
−(z ) = (1− z/z1

−)(1 − z /z2
− ) ⋅ ⋅ ⋅(1 − z /zn

− )                         (7) 

Therefore 
 
                Π(θ ) = Πn (θ) Πεn

(θ)                                  (8) 

               Πn(θ) = ψ n
+(z ) ψ n

−(1/z) , Πε n
(θ ) = ψ εn

+ ( z) ψ εn

− (1/z )            (9) 

 
From Eqs. (5) and (9), we have  
 

                 uε n
(z,ζ) = ψ εn

+ (t) ψ εn

− (1
t ) 

−i ∞ exp(iα2 )

+i 0exp( iα1 )

∫ e
− i k

2
( z

t
+ζ t ) dt

t              (10) 

                 u(z,ζ) = ψ n
+ (i 2

k
∂

∂ζ ) ψ n
− (i 2

k
∂
∂z

) uεn
(z,ζ )                   (11) 

 
Equation (11) shows that the exact field u is symbolically derived from the 

corrected uεn by a linear transformation (a differential operation). Physically speaking, 

u is expressed by expanding it into a multipole series in which uεn acts as a leading 

term just like a monopole field in cylindrical harmonic series expansions. It may be 

remarkable that the filed u is determined from uεn and, for an adequately large n,  uεn 

is a known quantity [1][2].  
     The arguments stated above may be repeated again from another point of view. 
Introducing the Borel transform 
 

 
f ±(z) =

1

2πi
F±(t )e

+ i kz
2 t

γ ±�∫ dt ,  F±(z) = i k
2 f ±(t)e−i kz

2 t

0

− i∞ exp( iα)

∫ dt      (12) 

                      arg z + α < π
2  

for 
           f ± ( z) = ψ ± ( z),ψ εn

± (z ) , F ± (z ) = Ψ ± ( z), Ψ εn

± (z)                   (13) 

 
we have [1][2] 

                u(z,ζ) =
1

(2π i)2 dt dτ K(z,ζ; t,τ )Ψ−

γ +�∫γ −�∫ (t )Ψ+(τ )          (14) 

                K (z,ζ ; t ,τ ) = πiH 0
(2)(k ( z − t)(ζ − τ ) )               (15) 
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            uε n
(z,ζ) =

1

(2π i)2 dt dτ K(z,ζ ;t,τ )Ψεn

−

γ +�∫γ −�∫ (t )Ψ εn

+ (τ )        (16) 

and obtain another version of Eq.(11): 
 

                 Ψ ±(z ) = ψ n
± (i 2

k
∂
∂z

)Ψεn

± (z)                              (17) 

This is an expression for multipole expansions of the field u written in the Borel 
domain. Geometrical optic nature of the field is described by the linear operator that 
generates multiple interference of waves.  
 
  
4. Computational Algorithm to the Truncated Spectrum  
 
     As stated above, the truncated function for the spectrum amplitude is given by a 
polynomial 

               
ψ n (z ) = (1− z/z1)(1− z/z2 ) ⋅ ⋅ ⋅ (1 − z /zn )

         = 1+ c1z + c2z
2 + ... + cnz

n
                     (18) 

where the coefficients cms are witten in terms of the zeros zms as follows:  
 

            

 

c1 = −1/z1 −1/z2 − ...− 1/zn

c2  = 1/z1z2 +1/z1z3 + ...+1/zn −1zn

c3 = −1/z1z2z3 −1/z1z2z4 − ...− 1/zn −2 zn −1zn

     � � � � � � � �

cn = (−1)n1/z1z2 ⋅ ⋅ ⋅ zn

              (19) 

 
If these zeros are not yet determined but, instead, the bms are already known in the 
form of  
 

                 

 

b1 = 1/z1 +1/z2 + ...+1/zn

b2 = 1/z1
2 +1/z2

2 + ... +1/zn
2

b
3

= 1/z
1
3 +1/z

2
3 + ... +1/z

n
3

    � � � � � � � �

bn = 1/z1
n +1/z2

n + ... +1/zn
n

                             (20) 

 
then the cms can be computed by the Newton's algorithm [8]; i.e.,  
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c1 = −b1

c2 = − 1

2
(b2 − b1

2 )

c3 = − 1

3
(b3 + c1b2 + c2b1 )

     � � � � � � � �

cm = − 1

m
(bm + c1bm−1 + c2bm −2 + ...+ cm −1b1)

     � � � � � � � �

cn = − 1
n

(bn + c1bn−1 + c2bn −2 + ...+ cn−1b1 )

               (21) 

 
and 

                 cn +l = 0       l = 1,2,3,...                               (22) 

 
Equation (22) is readily derived from Eq. (21) and the associated Newton's formula 
 

                 bn+l = −c1bn+l −1 − c2bn +l − 2 − ... − cnbl                     (23) 

 
     We go back to Eqs. (7) and apply Formulas (21) and (22) to calculate the 
coefficients of the polynomials that are under consideration. Namely,  

for ψ n
+ (z) ,              bm = −a−m  (m = 1,2,3,...,n)                     (24) 

and  for ψ n
−(z) ,          bm = am  (m = 1,2, 3,..., n)                      (25) 

where 
 

                
2

0

1 ln ( )
2

= − Π∫ im
m na m e d

π θ θ θ
π

                       (26)    

 
Although we have cited the final results from [8], the derivation of Eqs. (24) 

and (25) is not so difficult when substituting Eqs. (7) and (9) into Eq. (26) and carrying 
out the integration in the complex plane. If no errors are contained, we can determine 

the exact polynomials from Eq. (18). However, when n tends to infinity , Eq. (26) will 

converge slowly and, as a result,ψ n
+ (z) and ψ n

− (z)  will also converge very slowly. For 

a large number of n, the quantities described by the subscript εn may be small and are 

known data under static approximations. The truncated spectrum amplitude Πn(θ) can 

be obtained by subtracting the known part from Π(θ).                        
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5. Conclusions 
      
     Analytic singularities of the scattering from polygonal cylinders have been 
removed from the plane wave spectra. The regularized spectra have been described in 
terms of polynomials of finite degree, which are exactly determined by the Newton's 
algorithm. This is a sort of analytic continuation to the complex space from the 

numerical data on Π(θ). All zeros of Πn(θ), although finite, are distributed over the 

complex z plane. Some are close to but outside the unit circle, and others may be apart 
from it. However, the major zeros never extend to infinity in the present regularization 
scheme.  
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Field-Based-Stabilized Combined Tangential Formulation for the
Accurate Solution of Scattering Problems Involving
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Abstract — We present a robust stabilization technique, which enables the accurate
solution of scattering problems involving dielectric objects with arbitrarily low contrasts
via surface integral equations (SIEs). Conventional SIEs provide inaccurate results for
the scattered fields when the contrast of an object is low, i.e., when the electromagnetic
material parameters of the scatterer and the host medium are close to each other. The
proposed technique is based on decomposing the equivalent currents into radiating and
nonradiating parts, and extracting the dominant nonradiating currents. In addition, we
rearrange the right-hand side of the equations by introducing fictitious incident fields to
eliminate numerical problems for very low contrasts. The overall stabilization procedure
is applied to a combined tangential formulation (CTF) with a negligible computational
cost. We show that the resulting stable formulation, which is called the field-based
stabilized CTF (FBS-CTF), provides accurate results even for extremely low-contrast
objects, and its accuracy does not break down with finite-precision methods, such as
the multilevel fast multipole algorithm.

1. INTRODUCTION

Surface integral equations (SIEs) are commonly used to formulate scattering problems involving three-
dimensional dielectric objects with arbitrary shapes. Using equivalent electric and magnetic currents
and applying the boundary conditions on the surface of the scatterer, a set of integral equations can
be obtained. In the literature, various SIE formulations are derived by using diverse combinations
of the boundary conditions, testing schemes, and scaling operations for the numerical solution of
scattering problems [1]–[15]. Some of these formulations are stable and free of the internal-resonance
problem, and they provide accurate results for dielectric objects with moderate dielectric parameters.
Unfortunately, those formulations become inaccurate as the contrast of the object decreases, i.e., when
the electromagnetic material properties of the object and the host medium become close to each other.

There are various applications that involve scattering from low-contrast objects, such as red blood
cells in blood plasma [11],[16],[17], plastic mines buried in soil [18], polymeric materials [19], and
dielectric photonic crystals [20]. When the contrast is low, however, traditional SIE formulations
encounter stability problems, and the scattered fields cannot be calculated accurately with them. Those
scattering problems can be solved accurately with volume integral equations (VIEs) [21], which are
stable when the contrast is low. On the other hand, it is also desirable to extend the applicability of
SIEs to low-contrast problems in order to use the advantages of the surface formulations, which are
usually discretized with fewer unknowns compared to volume formulations.

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Research Grant
105E172, by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program (LG/TUBA-
GEBIP/2002-1-12), and by contracts from ASELSAN and SSM.
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In this paper, we present a robust stabilization technique, which enables the accurate solution of
low-contrast problems with SIEs. This technique is based on decomposing the equivalent currents
into radiating and nonradiating parts [22],[23]. The nonradiating currents correspond to the tangential
incident fields on the surface of the scatterer. When the contrast of the object is low, the nonradiating
currents dominate the solution, and the radiating currents form very small portions of the total currents.
Therefore, when the total currents are solved by employing the conventional surface formulations, it
becomes difficult to perform the calculations accurately enough to capture the small radiating currents
properly. By extracting the nonradiating currents, however, the radiating currents can be computed
accurately even for low-contrast objects, i.e., when the radiating currents are numerically insignificant
compared to the nonradiating currents.

Extraction of the nonradiating currents is necessary but not sufficient to solve problems with arbitrarily
low contrasts. Numerical errors arising on the right-hand sides (RHSs) of integral equations become
significant and deteriorate the accuracy of the results when the contrast decreases to very low values.
As a remedy, we define fictitious incident fields and rearrange the RHSs of the equations. The
overall stabilization procedure, which involves the extraction of the nonradiating currents and the
rearrangement of the RHS, is applied to a combined tangential formulation (CTF). We show that
the resulting stable formulation, which we call the field-based stabilized CTF (FBS-CTF), provides
accurate results even for extremely low-contrast objects. FBS-CTF is easy to implement by modifying
the existing codes for the conventional CTF, it has a negligible extra cost, and its accuracy does not
break down with finite-precision methods, such as the fast multipole method [24] and the multilevel
fast multipole algorithm (MLFMA) [25].

2. SURFACE INTEGRAL EQUATIONS

For homogenous dielectric objects, SIE formulations are constructed by combining tangential (T)
and normal equations (N), namely, the tangential electric-field integral equation (T-EFIE), the normal
electric-field integral equation (N-EFIE), the tangential magnetic-field integral equation (T-MFIE), and
the normal magnetic-field integral equation (N-MFIE) [8]. In the T equations, boundary conditions
are tested directly by sampling the tangential components of the electric and magnetic fields on the
surface. In the N equations, however, electromagnetic fields are tested after they are projected onto
the surface via a cross-product operation with the outward normal vector n̂. These equations can be
obtained for both the inner and outer regions, and they can be combined in diverse ways to derive
various SIE formulations [1]–[15].

In general, SIE formulations can be categorized into three groups, i.e., tangential, normal, and mixed
formulations, depending on the integral equations used to construct the formulation. The tangential
formulations, such as the tangential Poggio-Miller-Chang-Harrington-Wu-Tsai (T-PMCHWT) formula-
tion [2]–[4] and CTF [13], are obtained by using T-EFIE and T-MFIE. In both formulations, T-EFIE and
T-MFIE are solved simultaneously, while the inner and outer equations are linearly combined to avoid
internal resonances. Similar combinations of N-EFIE and N-MFIE lead to the normal formulations,
such as the combined normal formulation (CNF) [13], the normal Müller formulation (NMF) [1], and
the modified normal Müller formulation (MNMF) [14]. Finally, the mixed formulations, such as the
electric and magnetic current combined-field integral equation (JMCFIE) [12],[26] and the combined
PMCHWT Müller formulation (CPMF) [27], are obtained by combining the tangential and normal
formulations appropriately. JMCFIE involves a combination of CTF and CNF, while CPMF is a similar
combination of PMCHWT and MNMF. There are also other types of mixed formulations, which are
generally called the combined-field integral equation (CFIE) formulations, where the T-EFIE, T-MFIE,
N-EFIE, and N-MFIE are combined in various ways while the inner and outer problems are solved
simultaneously [7]–[10].

Using a Galerkin scheme in the discretization of the surface formulations, i.e., using the same set of
functions to expand the current densities (basis functions) and to test the boundary conditions (testing
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functions), the normal and mixed formulations contain well-tested identity operators [13]. Therefore,
these formulations usually produce well-conditioned matrix equations, which are easy to solve iter-
atively. However, the tangential formulations do not contain well-tested identity operators, and their
discretizations may lead to ill-conditioned matrix equations. For the efficiency of the solutions, normal
and mixed formulations are preferable, especially when problems involve large objects discretized with
large numbers of unknowns [28],[29]. On the other hand, errors in the discretization of the well-tested
identity operators may deteriorate the accuracy of the solutions obtained with the normal and mixed
formulations [13]. The excessive error in those formulations compared to the tangential formulations
can be significant [27],[28],[29], especially in conventional implementations employing the low-order
Rao-Wilton-Glisson (RWG) functions [30]. In such cases, it is helpful to improve the discretizations
either by employing higher-order basis functions [13],[31] or by reducing the size of the discretization
elements, to obtain accurate results.

Conventional SIE formulations are stable and provide accurate solutions (with various levels of
accuracy, depending on the existence of well-tested identity operators, types of the basis and testing
functions, discretization method, geometry of the object, etc.), for problems involving objects with
moderate contrasts. However, those formulations become inaccurate to calculate the scattered fields
as the contrast of the object decreases, i.e., when the electromagnetic material properties of the object
and the host medium become close to each other. This is one of the major drawbacks of the SIE
formulations in comparison to VIE formulations, which do not break down for low contrasts. In this
paper, we present a robust stabilization procedure to eliminate the low-contrast breakdown in surface
formulations.

3. COMBINED TANGENTIAL FORMULATION

The stabilization procedure is applied to CTF (that is slightly different from the original CTF presented
in [13]), although it can be generalized to other existing formulations in the literature. Consider
scattering from a homogenous dielectric object with a three-dimensional arbitrary shape. We assume
time-harmonic electromagnetic fields with e−iωt time dependence. Incident electromagnetic fields are
created by some external sources located outside the object. To derive CTF, operators for the outside
(l = 0) and inside (l = 1) the object are defined as

Kl{X}(r) =
∫

PV,S
dr′X(r′) ×∇′gl(r, r′) (1)

Tl{X}(r) = ikl

∫
S

dr′
[
X(r′) +

1
k2

l

∇′ · X(r′)∇
]
gl(r, r′), (2)

where X(r) is either the equivalent electric current J(r) = n̂ × H(r) or the equivalent magnetic
current M(r) = −n̂×E(r) on the surface of the object S, kl = ω

√
μlεl is the wavenumber associated

with medium l, and

gl(r, r′) =
exp (iklR)

4πR

(
R = |r − r′|

)
(3)

denotes the homogeneous-space Green’s function.

CTF is obtained by combining the inner and outer tangential equations, i.e., T-EFIE0 + T-EFIE1

and T-MFIE0 + T-MFIE1, as

t̂ ·

⎡
⎣ η0T0 + η1T1 −

(
K0 + K1

)
η0η1

(
K0 + K1

)
η1T0 + η0T1

⎤
⎦ ·

[
J
M

]
(r) = −t̂ ·

[
Ei(r)

η0η1H
i(r)

]
, (4)

where Ei(r) and Hi(r) are the incident electric and magnetic fields, ηl =
√

μl/εl is the impedance
of medium l, and t̂ is any tangential vector at the observation point r on the surface. CTF in (4) does
not contain any identity operator, and K operators are not well-tested [13],[27]. On the other hand, T
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operators are well-tested and they are located in the diagonal blocks. For low contrasts, i.e., ε1 ≈ ε0
and μ1 ≈ μ0, the diagonal blocks in (4) are numerically well-balanced, which is a desirable property
in terms of conditioning [13].

3.1. Discretization

For numerical solutions of CTF, surface currents are expanded in a series of RWG functions, i.e.,

J(r) =
N∑

n=1

xnbn(r) (5)

M(r) =
N∑

n=1

ynbn(r), (6)

where bn(r) for n = 1, 2, ..., N represents the nth basis function with a spatial support of An, while
xn and yn are unknown coefficients. Using a Galerkin scheme, we employ the same set of RWG
functions to test the boundary conditions, i.e., tm(r) for m = 1, 2, ..., N . Discretization of CTF leads
to 2N × 2N dense matrix equations in the form of[

Z̄11 Z̄12

Z̄21 Z̄22

]
·
[

x
y

]
= −

[
v

η0η1w

]
, (7)

where x and y are column vectors involving the unknown coefficients in (5) and (6), respectively.
Matrix elements in (7) are derived as

Z̄11 = η0T̄ 0 + η1T̄ 1 (8)

Z̄12 = −K̄0 − K̄1 (9)

Z̄21 = η0η1K̄0 + η0η1K̄1 (10)

Z̄22 = η1T̄ 0 + η0T̄ 1, (11)

where

K̄l[m,n] =
∫

Am

drtm(r) ·
∫

PV,An

dr′bn(r′) ×∇′gl(r, r′) (12)

T̄ l[m,n] = ikl

∫
Am

drtm(r) ·
∫

An

dr′bn(r′)gl(r, r′)

− i

kl

∫
Am

drtm(r) ·
∫

An

dr′∇′ · bn(r′)∇′gl(r, r′) (13)

for m,n = 1, 2, ..., N , and l = 0, 1. As it is commonly practiced in the T-EFIE formulations of
perfectly-conducting objects [30], the hyper-singularity in (13) removed by placing the differential
operator onto the divergence-conforming testing functions, i.e.,

T̄ l[m,n] = ikl

∫
Am

drtm(r) ·
∫

An

dr′bn(r′)gl(r, r′)

+
i

kl

∫
Am

dr∇ · tm(r)
∫

An

dr′∇′ · bn(r′)gl(r, r′). (14)

Integrals in (12) and (14) are evaluated accurately by employing Gaussian quadrature rules, adaptive
integration methods, and singularity extraction techniques [32]–[37]. Finally, to calculate the elements
of the RHS vector in (7), the integrals

v[m] =
∫

Am

drtm(r) · Ei(r) (15)

w[m] =
∫

Am

drtm(r) · H i(r) (16)
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are evaluated for m = 1, 2, ..., N .

3.2. Solutions via MLFMA

Matrix equations obtained with CTF can be solved iteratively, where the required matrix-vector
multiplications are performed efficiently by MLFMA in O(N log N) time using O(N log N) mem-
ory [25]. A tree structure of O(log N) levels is constructed by placing the dielectric object in a cubic
box and recursively dividing the computational domain into sub-boxes (clusters). Then, MLFMA
calculates the distant interactions between the basis and testing functions in a group-by-group manner
consisting of three stages called aggregation, translation, and disaggregation [38]. In each matrix-
vector multiplication, these stages are performed on the tree structure in a multilevel scheme.

By factorizing the Green’s function and performing a diagonalization [24], the matrix elements in
(12) and (14) can be rewritten as

K̄ l[m,n] =
(

ikl

4π

)2 ∫
d2k̂FKmC(kl)αLl

(kl,RCC′) · SC′n(kl) (17)

T̄ l[m,n] =
(

ikl

4π

)2 ∫
d2k̂F TmC(kl)αLl

(kl,RCC′) · SC′n(kl) (18)

when the testing and basis functions are far from each other. In (17) and (18), k̂ is the angular
direction, kl = klk̂, and

αLl
(kl,RCC′) =

Ll∑
t=0

it(2t + 1)h(1)
t (klRCC′)Pt(R̂CC′ · k̂) (19)

is the translation operator expressed in terms of the spherical Hankel function of the first kind h
(1)
t

and the Legendre polynomial Pt. In (17) and (18), the radiation pattern of the nth basis function in
cluster C ′, i.e., SC′n(kl), is translated into incoming fields for the testing functions in cluster C . The
distance between the clusters is represented by the vector

RCC′ = RCC′R̂CC′ = rC − rC′ , (20)

where rC and rC′ are reference points of the clusters C and C ′, respectively. Then, the incoming
fields are received by using the receiving patterns of the mth testing function, i.e., FKmC(kl) and
F TmC(kl). Using a Galerkin scheme, the radiation and receiving patterns are calculated as [8],[29]

SC′n(kl) =
∫

Sn

dr′ exp
[
−ikl · (r′ − rC′)

]
(Ī3×3 − k̂k̂) · bn(r′) (21)

FKmC(kl) = −k̂ ×
{
SCm(kl)

}∗ (22)

F TmC(kl) =
{
SCm(kl)

}∗
, (23)

where Ī3×3 denotes the 3 × 3 unit dyad and “*” represents the complex-conjugate operation.

In MLFMA, the interactions in (17) and (18) are calculated in a multilevel scheme. During the
aggregation stage, radiation patterns of the clusters are calculated from the bottom to the top of the
tree structure. Then, translations are performed to obtain the incoming fields for all clusters. Finally,
the disaggregation stage is performed from the top of the tree structure to the lowest level, where the
incoming fields are received by the testing functions to complete the matrix-vector multiplications. For
each cluster, radiation and receiving patterns are sampled at (Ll +1)×(2Ll +2) angular points, where
Ll is the truncation number in (19) that is determined by the excess bandwidth formula [39]. Since
Ll is proportional to the size of the clusters with respect to the wavelength, different tree structures
are constructed for the inner and outer media.
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3.3. Low-Contrast Breakdown

Scattered fields obtained by using conventional formulations, such as CTF, become inaccurate as the
contrast of the object decreases, i.e., when the electromagnetic material properties of the object and
the host medium become close to each other. To explain this breakdown, we note that any arbitrary
solution can be decomposed as

J(r) = I×n{H}(r) = n̂ × H(r) = n̂ × Hi(r) + n̂ × Hr(r) (24)

M(r) = −I×n{E}(r) = −n̂ × E(r) = −n̂ × Ei(r) − n̂ × Er(r), (25)

where
{
J i(r),M i(r)

}
=
{
n̂ × Hi(r),−n̂ × Ei(r)

}
do not radiate, i.e.,[

η0T0 −K0 + 0.5I×n

K0 − 0.5I×n η−1
0 T0

]
·
[

J i

M i

]
(r) =

[
0
0

]
. (26)

As the contrast goes to zero, the nonradiating currents dominate the total currents, while the radiating
currents, i.e.,

{
Jr(r),M r(r)

}
=
{
n̂×Hr(r),−n̂×Er(r)}, tend to vanish. Therefore, when the total

currents are solved by employing the conventional surface formulations, it becomes difficult to perform
the calculations accurately enough to capture the small radiating currents properly. The total currents
J(r) and M(r) can be computed with relatively small error, but scattered fields may not be obtained
accurately from them [22].

4. STABILIZATION OF CTF

For the accurate solution of scattering problems involving low-contrast objects, CTF is stabilized
by extracting the nonradiating currents and solving only the radiating currents [23]. The resulting
formulation, which we call stable CTF (S-CTF), can be written as

t̂ ·

⎡
⎣ η0T0 + η1T1 −

(
K0 + K1

)
η0η1

(
K0 + K1

)
η1T0 + η0T1

⎤
⎦ ·

[
Jr

M r

]
(r)

= t̂ ·

⎡
⎣ η0T0 − η1T1 −

(
K0 −K1

)
η0η1

(
K0 −K1

)
η1T0 − η0T1

⎤
⎦ ·

[
J i

M i

]
(r). (27)

We note that the left-hand side (LHS) of S-CTF in (27) is the same as the LHS of CTF in (4), and the
stabilization procedure alters only the RHS of the original formulation. Discretization of (27) leads to[

Z̄11 Z̄12

Z̄21 Z̄22

]
·
[

xr

yr

]
=

[
Ȳ 11 Ȳ 12

Ȳ 21 Ȳ 22

]
·
[

xi

yi

]
, (28)

where

Ȳ 11 = η0T̄ 0 − η1T̄ 1 (29)

Ȳ 12 = −K̄0 + K̄1 (30)

Ȳ 21 = η0η1K̄0 − η0η1K̄1 (31)

Ȳ 22 = η1T̄ 0 − η0T̄ 1. (32)

In (28), {xr,yr} and {xi,yi} are two sets of column vectors involving the coefficients expanding
the radiating and nonradiating currents, respectively, i.e.,

{
n̂ × Hr(r),−n̂ × Er(r)

}
=

N∑
n=1

{
xr

n, yr
n

}
bn(r) (33)

{
n̂ × Hi(r),−n̂ × Ei(r)

}
=

N∑
n=1

{
xi

n, yi
n

}
bn(r). (34)
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To obtain the coefficients expanding the known nonradiating currents, we solve the sparse matrix
equation [23] [

Ī 0
0 Ī

]
·
[

xi

yi

]
=

[
w×n

−v×n

]
, (35)

where

Ī[m,n] =
∫

Am

drtm(r) · bn(r) (36)

w×n =
∫

Am

drtm(r) · n̂ × Hi(r) (37)

v×n =
∫

Am

drtm(r) · n̂ × Ei(r). (38)

Inserting (35) in (28), discretized S-CTF can be written as[
Z̄11 Z̄12

Z̄21 Z̄22

]
·
[

xr

yr

]
=

[
Ȳ 11 Ȳ 12

Ȳ 21 Ȳ 22

]
·
[

Ī 0
0 Ī

]−1

·
[

w×n

−v×n

]
. (39)

In S-CTF, the nonradiating currents are located on the RHS and only the radiating currents are solved
for. This way, the radiating currents can be computed accurately for low-contrast objects, i.e., when
the radiating currents are numerically insignificant compared to the nonradiating currents. Despite
this corrective approach, even S-CTF breaks down and fails to provide accurate results for very low
contrasts. The reason is the numerical errors arising during the computation of the RHS of S-CTF. On
the RHS, K and T operators are applied on the nonradiating currents via matrix-vector multiplications,
i.e.,[

Ȳ 11 Ȳ 12

Ȳ 21 Ȳ 22

]
·
[

xi

yi

]
=

[
η0T̄ 0 −K̄0

η0η1K̄0 η1T̄ 0

]
·
[

xi

yi

]
−

[
η1T̄ 1 −K̄1

η0η1K̄1 η0T̄ 1

]
·
[

xi

yi

]
. (40)

When the contrast decreases to very low values, the RHS of S-CTF is vanishingly small, but it is
obtained by the subtraction of two terms that are relatively large. Then, depending on the accuracy of
the matrix-vector multiplications in (40), the RHS of S-CTF may not be calculated accurately when
the contrast is very low.

In order to obtain a stable formulation for arbitrarily low contrasts, we rearrange the RHS of S-CTF
by introducing fictitious incident fields [40], i.e.,

Ei
f (r) =

[
Ei(r)

]
ε0→ε1
μ0→μ1

(41)

H i
f (r) =

[
H i(r)

]
ε0→ε1
μ0→μ1

. (42)

Similar to (26), the fictitious incident fields satisfy[
η1T1 −K1 + 0.5I×n

K1 − 0.5I×n η−1
1 T1

]
·
[

n̂ × H i
f

−n̂ × Ei
f

]
(r) =

[
0
0

]
. (43)

Using (43) in (27), we obtain

t̂ ·

⎡
⎣ η0T0 + η1T1 −

(
K0 + K1

)
η0η1

(
K0 + K1

)
η1T0 + η0T1

⎤
⎦ ·

[
Jr

Mr

]
(r)

= −0.5t̂ ·
[

Ei − Ei
f

η0η1H
i − η0η1H

i
f

]
(r) − t̂ ·

[
η1T1 −K1

η0η1K1 η0T1

]
·
[

n̂ × Hi − n̂ × Hi
f

−n̂ × Ei + n̂ × Ei
f

]
(r).

(44)
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which we call FBS-CTF. Discretization of FBS-CTF leads to[
Z̄11 Z̄12

Z̄21 Z̄22

]
·
[

xr

yr

]
= −0.5

[
Ī 0
0 Ī

]−1

·
[

vf

η0η1wf

]

−
[

η1T̄ 1 −K̄1

η0η1K̄1 η0T̄ 1

]
·
[

Ī 0
0 Ī

]−1

·
[

w×n
f

−v×n
f

]
, (45)

where

vf [m] =
∫

Am

drtm(r) ·
(
Ei(r) − Ei

f (r)
)

(46)

wf [m] =
∫

Am

drtm(r) ·
(
H i(r) − Hi

f (r)
)

(47)

v×n
f [m] =

∫
Am

drtm(r) · n̂ ×
(
Ei(r) − Ei

f (r)
)

(48)

w×n
f [m] =

∫
Am

drtm(r) · n̂ ×
(
H i(r) − H i

f (r)
)
. (49)

In (46)–(49), real and fictitious incident fields are subtracted from each other analytically in the
continuous space before the discretization. Then, the RHS of FBS-CTF in (45) is obtained as the sum
of two terms, which are both small when the contrast is low, and it can be calculated accurately for
arbitrarily low contrasts. FBS-CTF can easily be obtained from the conventional CTF implementation
and its extra cost is negligible.

5. RESULTS

In order to demonstrate the accuracy of FBS-CTF compared to CTF and S-CTF for arbitrarily low
contrasts, we consider the solution of scattering problems involving a sphere of radius 0.5λ0, where
λ0 is the wavelength outside the sphere. The sphere is located in free space and illuminated by a plane
wave propagating in the z direction with the electric field polarized in the x direction. Discretization
of the sphere with λ0/10 mesh size leads to matrix equations with 1860 unknowns. Matrix elements
are computed directly with 5×10−3 relative error. Fig. 1 depicts the bistatic radar cross section (RCS),
when the relative permittivity of the sphere is 1.1, 1.0 + 10−3, 1.0 + 10−6, and 1.0 + 10−9. With
these values, the contrast of the sphere, i.e., (ε1− ε0)/ε0, changes from 0.1 to 10−9. Normalized RCS
(RCS/λ2

1) is plotted in decibels (dB) as a function of the observation angle on the φ = 0◦ plane, where
0◦ corresponds to the forward-scattering direction. RCS values are also computed analytically by a
Mie-series solution. Fig. 1(a) shows that CTF, S-CTF, and FBS-CTF provide accurate results when the
contrast is 0.1. As the contrast decreases to 10−3 and 10−6, however, CTF breaks down and cannot
provide accurate results. When the contrast is further reduced to 10−9, S-CTF also fails to agree with
the analytical solution. On the other hand, FBS-CTF provides accurate results for all contrast in Fig. 1.

Fig. 2 presents the RCS of the sphere with radius 0.5λ0, when the contrast is 10−6 and 10−9. This
time, the scattering problems are solved iteratively, where the far-field interactions are computed via
FMM with two digits of accuracy. Fig. 2(a) shows that the FMM solution of S-CTF is significantly
inaccurate when the contrast is 10−6, as opposed to the MOM solution in Fig. 2(c). This is because the
accuracy of S-CTF is sensitive to the accuracy of the matrix-vector multiplications when the contrast
is very low. However, as demonstrated in Fig. 2, FBS-CTF is stable for arbitrarily low contrasts, even
with finite-precision methods.

Fig. 3 presents the solution of large scattering problems, involving a sphere of radius 6λ0. The sphere
is again located in free space and illuminated by a plane wave propagating in the z direction with
the electric field polarized in the x direction. Discretization of the sphere with λ0/10 mesh size leads
to matrix equations with 264,006 unknowns. Scattering problems are solved iteratively via MLFMA
with two digits of accuracy. Figs. 3(a) and 3(b) present the bistatic RCS values on the φ = 0◦ plane
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Fig. 1. Normalized bistatic RCS (RCS/λ2
0 on the φ = 0◦ plane) of a sphere of radius 0.5λ0, where λ0 is the wavelength

outside the sphere (free space), when the relative permittivity of the sphere is (a) 1 + 10−1, (b) 1 + 10−3, (b) 1 + 10−6,
and (c) 1 + 10−9. The sphere is illuminated by a plane wave propagating in the z direction with the electric field polarized
in the x direction.

when the contrast of the sphere is 10−3 and 10−6, respectively. Similar to the previous examples,
CTF is significantly inaccurate in both cases. When the contrast is 10−6, RCS values obtained with
S-CTF are also inaccurate and inconsistent with the analytical results, especially in the back-scattering
direction. On the other hand, FBS-CTF provides accurate results for both 10−3 and 10−6 contrasts.
RCS values provided by this formulation deviate from the analytical results only around 90◦, where
scattering is very low.

Finally, Fig. 4 presents the results of scattering problems involving a λ0 × λ0 × λ0/10 dielectric
slab, where λ0 = 1 m is the wavelength outside the object (free space). The slab is located at the
origin as depicted in the inset of Fig 4(a), and it is illuminated by a plane wave propagating in the
z direction with the electric field polarized in the x direction. We consider four different relative
permittivities for the slab, i.e., 2.0, 1.1, 1 + 10−3, and 1 + 10−6, corresponding to 1.0, 0.1, 10−3,
and 10−6 contrasts, respectively. The slab is discretized with λ0/20 mesh size leading to matrix
equations with 11,424 unknowns. Scattering problems are solved by using FMM, where the near-
field interactions are calculated with 5 × 10−3 error and the far-field interactions are calculated with
two digits of accuracy. We plot the bistatic RCS in dBms as a function of the observation angle
on the φ = 0◦ plane. RCS values obtained by using CTF and FBS-CTF are compared with those
obtained by using the electric-field VIE [21], which is immune to low-contrast problems. As depicted
in Fig. 4(a), CTF and FBS-CTF are consistent with VIE when the contrast of the slab is relatively
large (1.0). As the contrast decreases to 0.1, 10−3, 10−6, however, RCS values obtained with CTF
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Fig. 2. Normalized bistatic RCS (RCS/λ2
0 on the φ = 0◦ plane) of a sphere of radius 0.5λ0, where λ0 is the wavelength

outside the sphere (free space), when the relative permittivity of the sphere is (a) 1 + 10−6 and (b) 1 + 10−9. Scattering
problems are solved iteratively by using FMM.
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Fig. 3. Normalized bistatic RCS (RCS/λ2
0 on the φ = 0◦ plane) of a sphere of radius 6λ0, where λ0 is the wavelength

outside the sphere (free space), when the relative permittivity of the sphere is (a) 1 + 10−3 and (b) 1 + 10−6. Scattering
problems are solved iteratively by using MLFMA.

become inconsistent with the values obtained with FBS-CTF and VIE. As in the previous examples,
FBS-CTF is accurate and agrees well with the reference VIE for all contrasts.

6. CONCLUSION

We present a robust stabilization technique for the accurate surface formulations of dielectric bodies
with arbitrarily low contrasts. The technique is based on extracting the nonradiating currents, using
fictitious incident fields to rearrange the RHSs of the equations, and solving the modified equations to
obtain the radiating currents very accurately. The stabilization is easy to implement by modifying the
existing codes for the conventional formulations, and its computational cost is negligible. We apply
the stabilization procedure to CTF, resulting in a stable formulation called FBS-CTF, which provides
accurate results even for extremely low-contrast objects.
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[12] P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic

EWS 2008                                                                                                                                                                  5-11



scattering by dielectric and composite objects,” IEEE Trans. Antennas Propagat., vol. 53, no. 3, pp. 1168–
1173, Mar. 2005.
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Abstract − We present a non-iterative and parallel finite element technique that is tailored for 
large-scale electromagnetic scattering problems. This approach, called the Characteristic Basis 
Finite Element Method (CBFEM-MPI), combines the domain decomposition technique with the 
use of specially-defined characteristic basis functions (CBFs). Two major advantages of this 
method are considerable reduction in the matrix size and convenient parallelization using MPI 
library, both of which make possible the direct solution of large-scale problems in an efficient 
manner. The accuracy of the proposed technique has been validated via a number of numerical 
simulations. 

 

1. INTRODUCTION 
The Finite Element Method (FEM) is a powerful technique for modeling and simulating real-world 

electromagnetic scattering problems, which involve electrically-large and geometrically-complex objects 
comprising of complex materials. However, the conventional FEM as well as other numerical methods 
yield ‘large’ matrices for such multi-scale problems whose solution may place a heavy burden, not only on 
the memory—even if a sparse storage scheme is used— but also the CPU time due to the slow and 
unstable nature of the convergence of iterative solvers, despite the use of preconditioners. Hence, 
alternative techniques, such as the domain decomposition (DD) methods, have been proposed during the 
last few years to break down a large-scale problem into a number of small and manageable subproblems.  

 
In this study, we present the “Characteristic Basis Finite Element Method (CBFEM-MPI),” which is a 

novel domain decomposition finite element algorithm for the solution of electromagnetic scattering 
problems. This non-iterative technique has been parallelized by utilizing the Message Passing Interface 
(MPI) library. The characteristic basis functions (CBFs)—macro-domain basis functions that are 
constructed in each subdomain by considering the physics of the problem—have been originally proposed 
to solve time-harmonic electromagnetic problems in the context of the Method of Moments (MoM) that 
has employed overlapping subdomains [1]. However, the CBFEM-MPI is considerably different from all 
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previous approaches because of the details of its implementation, which partitions the original 
computational domain into a number of non-overlapping subdomains, and generates the CBFs by 
employing two novel procedures. Specifically, the CBFs are obtained either by calculating the fields 
radiated by a finite number of dipole-type sources [2], or by determining Physical Optics (PO) fields by 
illuminating the object at different incident angles, polarization and frequency [3]. The major advantages 
of this technique are twofold: (i) it leads to a substantially reduced-matrix, which can be easily handled by 
using direct solvers; and (ii) its parallelizable nature leads to a substantial decrease in the overall 
computation time through the use of multiple processors. We have validated the accuracy of the proposed 
technique via several 3D electromagnetic scattering problems, and presented a number of representative 
examples to illustrate the versatility of the method. 

 
2. CBFEM-MPI FORMULATION  

A general electromagnetic scattering problem is illustrated in Fig. 1(a). If the scatterer is perfectly 
conducting, we solve the boundary value problem governed by the vector wave equation for the scattered 
field as follows: 

2 0s sE k E∇×∇× − =
r r

 in ΩFS       (1.a) 

with BC: ˆ ˆs incn E n E× = − ×
r r

  on ∂ΩS     (1.b) 

In a conventional FEM procedure, we arrive at a global matrix system [A][x] = [b], where [x] is the 
unknown scalar tangential fields along the edges of the FEM mesh; [A] is the global matrix; and [b] is the 
known RHS vector. 

   
The CBFEM-MPI algorithm starts with partitioning the original problem into a number of 

non-overlapping subdomains. The main concern of the algorithm is to generate a set of CBFs that are 
specially-defined in each subdomain. The procedures for CBF generation are described in Sec. 2.1 and 2.2 
in detail. In a broad outline of this technique, the unknown fields are expressed as a series of these CBFs 
that are weighted with unknown coefficients that are yet to be determined. Then, the matrix system in (1) 
is transformed into a “smaller” matrix—called the “reduced matrix”— using the Galerkin method, which 
employs the CBFs as both basis and testing functions. After solving the reduced matrix for the unknown 
coefficients, the fields inside the entire domain are obtained by substituting the coefficients into the series 
expressions. The most appealing feature of the proposed approach is that the reduced-matrix can still be 
solved by direct solvers (such as the LU factorization), even if the original problem size is very large. 
Therefore, in contrast to iterative solvers, multiple right hand side vectors (i.e., multiple illuminations in 
the scattering problem) can be handled efficiently with little additional computational burden. 
 
2.1. CBF generation by employing dipoles 

The CBFs can be generated by placing a finite number of fictitious dipoles (or current elements in general) 
on the object’s boundary, as illustrated by the black arrows in Fig. 1(b), by assuming that the object is perfectly 
conducting. The fields that are radiated by these dipoles can be conveniently used as CBFs because they 
not only form the natural basis functions for the field distribution inside the entire computational domain, 
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but they also incorporate the physics of the problem. These dipoles can easily be chosen to lie along the 
edges of the usual finite element mesh pertaining to the boundary of the object (see Fig. 1(c)). If the object 
is dielectric, or conductor with full- or partial-dielectric coating, then we also place dipoles inside the 
dielectric regions, as demonstrated in Fig. 2. In this case, we may also employ both electric and magnetic 
dipoles, although the choice of electric dipoles alone is sufficient. 

 

 

Figure 1. (a) Original scattering problem; (b) CBFEM approach for perfectly conducting object by 
employing dipoles; (c) Illustration of dipole positions on the boundary of object. 

 

 
Figure 2. CBFEM approach for dielectrics by employing dipoles: (a) Partially-coated conducting object, 
(b) Pure-dielectric object. 

 
2.2. CBF generation by employing PO fields 

Alternatively, the CBFs can be determined by invoking the principles of Physical Optics (PO) in such 

a way that PO current sources, namely ˆ2 incJ n H= ×
r s

, are located on a portion of the scatterer boundary 
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(or on the entire boundary in some cases), assuming that the object is perfectly conducting and that the 
principle radii of curvature of the surface are large (see Fig. 3). The fields that are radiated by these 
sources, and integrated (or summed) over the corresponding boundary, for each incident angle, 
polarization and frequency, are used as “excitation sources” for the corresponding interfaces and 
subdomain. The CBFs are determined by illuminating the object with NPW number of plane waves, which 
impinge upon at certain intervals of θ and φ angles, for the two orthogonal polarizations, and at a certain 
number of frequencies around the actual frequency of operation. The number NPW is determined by the 

expression PW p kN N N N Nθ φ= × × × , where Nθ is the number of θ angles in the interval , 

Nφ is the number of φ angles in the interval , Np = 2 is the number of polarizations, and Nk 

is the number of frequencies (or wavenumbers). Since we have NPW number of incident plane waves, we 
will eventually have NPW number of CBFs for each interface. 

o0 180incθ≤ ≤

o0 360incφ≤ ≤

 

 
Figure 3. Generation of PO-based CBFs by using a plane wave spectrum using different incident angles, 
polarization, and frequency. 
 
2.3. Main steps of the CBFEM-MPI algorithm 

The basic steps in the implementation of the CBFEM-MPI algorithm are summarized below: 
 

Step-1: We generate the CBFs by treating the subdomains and interfaces separately, by following the 
approaches in either Sec. 2.1 or 2.2. We first determine the CBFs along each individual interface (Γi), 
which has no common edges with other interfaces. The next step is to apply the singular value 
decomposition (SVD) procedure to reduce the redundancy in the CBFs by orthogonalizing them, and then 
setting a threshold on the singular values, which results in a reduction in the number of CBFs. Finally, on 
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each interface, we have Mi number of CBFs denoted as ( )( )(1) (2) ... i

i i i
i i

M

N M
u u u Γ

Γ Γ Γ
×

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , where Ni is the 

number of interface points. 
Step-2. In order to find the CBFs in each subdomain (Ωj), we solve each sub-problem by assigning the 

post-SVD basis functions, derived in step-1, along the boundaries of the corresponding subdomain. Then, 
we apply the SVD operation once again, and determine Mj number of CBFs expressed as 

( )( )(1) (2) ... j

j j

M
j j j

N M
u u u

×

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , where Nj is the number of points in the inner part of the j-th subdomain. 

Step-3. We express the unknown fields for the j-th subdomain and for the i-th interface, respectively, 
as follows 

( ) ( )

1
1 1

j

j
j

M
n n

j j jN
n N

x c u
×

= ×

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦∑       and      ( ) ( )

1
1 1

i

i i i
i

i

M
n n

N
n N

x c uΓ Γ Γ×
= ×

⎡ ⎤ ⎡= ⎤⎣ ⎦ ⎣∑ ⎦    (2) 

We substitute these expressions into the global matrix system, and utilize the Galerkin approach to obtain 
the following reduced matrix system: [S][c] = [e], where [c] is the unknown coefficients, [S] and [e] are 
the reduced matrix and the new right-hand-side vector, respectively. The reduced matrix system can be 
solved for the weight coefficients either directly, or by using the Schur-complement approach, which 
decouples the unknowns on the interfaces, and thus, further reduces the size of the reduced-matrix (Here, 
the matrix size is equal to the total number of bases for interfaces). After solving the reduced matrix for 
unknown coefficients, the original unknowns (i.e., scattered fields) inside the entire domain are obtained 
by substituting the coefficients into the series expressions in (2). 

 
3. NUMERICAL EXPERIMENTS 

In this section, we report the results of numerical experiments to test the performance of the 
CBFEM–MPI technique. We assume that the wavelength λ is 1 m (i.e., the frequency is 300 MHz, and the 
wavenumber k is 6.2832).  

 
The first example, which employs dipoles in CBF generation, is a benchmark scattering problem 

where a plane wave is incident to a sphere whose diameter is 6λ. The original domain is partitioned into 
16 subdomains, as shown in the figure that is the inset of Fig. 4. For the original problem, the number of 
unknowns (edges or matrix size) is 313,958. Total number of dipoles chosen along the boundary of the 
sphere is 13,828. The CBFEM-MPI code yields a reduced-matrix whose size is 16,016, which is 
considerably less than the original matrix size. The bistatic RCS profile of the sphere is plotted in Fig. 4, 
which also compares it with both the conventional FEM and the Mie series results.  
 

The second example considers a sphere whose diameter is 8λ, and employs the PO fields to generate 
CBFs. The original matrix size is 541,977, after a uniform λ/10 mesh discretization. The number of 
subdomains is 12, and the number of plane waves is 2,000, such that the θ and φ angle increments are 20° 
and 90°, respectively, and the wavenumbers are {1, ..., 5, 6.2832, 7, ..., 25}. The CBFEM-MPI algorithm 
yields a reduced matrix whose size is 14,498. The bistatic RCS profiles are plotted in Fig. 5. 
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The third example deals with a missile whose radome diameter is 2λ and length is 21λ, with an axial 
(nose-on) plane wave incidence. The number of unknowns in this problem is 563,147. The computational 
domain is decomposed into 25 subdomains. In this problem, we employ both dipoles and PO fields. In the 
dipole-case, number of dipoles is 39,582. The size of the reduced-matrix is obtained as 22,706. In the 
PO-case, the wavenumbers are {1, ..., 5, 6.2832, 7, ..., 15}. We choose the φ angle increment as 90°; and 
the θ angle increment as 10° and 20° between 0°-80° and 80°-180°, respectively. The size of the 
reduced-matrix becomes 11,754. We plot the bistatic RCS profiles in Fig. 6. 

 
In the last example, we consider multi-layered concentric dielectric spheres, as shown in Fig. 7, and 

employ dipoles in CBF generation. The original matrix size is 48,562, after a non-uniform mesh 
discretization (i.e., λ/40 in εr1, λ/30 in εr2, λ/25 in εr3 & εr4). We partition the original problem into 3 
subdomains, as shown in Fig. 7(b). The size of the reduced-matrix is obtained as 2,485. We plot the 
bistatic RCS profiles in Fig. 8. 
 
4. CONCLUSIONS 
We have introduced a domain decomposition finite element algorithm for efficient solution of large-scale 
electromagnetic problems, by using characteristic basis functions that are specially-tailored by employing 
dipole-type sources or PO fields. We have pointed out that the CBFEM algorithm is capable of reducing 
the matrix size, which allows us to make use of the direct rather than iterative solvers, and lends itself to 
convenient parallelization. We have observed that the PO approach is more efficient in terms of the size of 
the reduced matrix and the number of CBFs. However, the dipole approach is more general and can be 
applied to both conducting and dielectric structures. To illustrate the versatility of the proposed method, 
we have presented a number of representative examples. We have observed that the CBFEM-MPI results 
are close to the reference results, and this leads us to conclude that the accuracy of the algorithm is 
validated. 
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Figure 4. Bistatic RCS profile of 6λ-sphere (using dipoles): (a) φ=0° plane, (b) φ=90° plane. 
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Figure 5. Bistatic RCS profile of 8λ-sphere (using PO fields): (a) φ=0° plane, (b) φ=90° plane. 
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Figure 6. Bistatic RCS profile of 21λ-missile: (a) φ=90° plane, (b) φ=0° plane. 
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Figure 7. Multi-layered dielectric concentric spheres: (a) Original problem, (b) Partitioned problem. 

 
Figure 8. Bistatic RCS profile of multi-layered dielectrics: (a) φ=90° plane, (b) φ=0° plane. 
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Abstract − Electromagnetic Interference (EMI) is part of Electromagnetic Compatibility 
(EMC) handling all issues of non-intentional interference between transmitters and receivers. 

In this document, various models and methods are described in order to carry out EMI 

simulations and evaluate the performance degradation of co-site equipments of a system. A 

next step will consist in validating the developed EMI simulation tool. The chosen study case is 

the 2.4 GHz ISM band Bluetooth/WiFi interaction. We have carried out BER measurements 

which results, summarized at the end of the paper, will be used for the planned validation work. 

 
 

1. INTRODUCTION 
Electromagnetic Interference (EMI) is part of Electromagnetic Compatibility (EMC) handling all 

issues of non-intentional interference between transmitters and receivers. As a result of the high 

concentration of radio-communication equipments in limited areas, typically on an aircraft or a frigate, the 

management of these disturbance problems has become more and more difficult. New well-adapted means 

of simulation are then necessary. The work described in this paper is about various models and methods 

developed in order to carry out EMI simulations.  

First, we start by introducing and defining the elements of the study. The expected results of these 

simulations are specified; namely interferences evaluation in terms of performance degradation. The next 

work is to validate our EMI analysis tool functionalities by comparing simulation results to measured ones. 

To manage it, we have chosen to test a typical EMI issue: the Bluetooth/WiFi (IEEE 802.11b/g) 

interaction at 2.4 GHz. It is an interesting study case because these civilian technologies operate on the 

same ISM band and often coexist. We have carried out BER measurements on a Bluetooth connection near 

a WiFi transmitter. The tests results are discussed at the end of the paper. We will use these measurements 

results to carry out the future validation work we have planned. 
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2. FRAMEWORK AND DEFINITION OF THE ELEMENTS OF THE STUDY 
Two types of approach are possible in EMI studies according to the fact that the system already exists 

or not. The first one is used in the case where the studied system is already built. It corresponds to the 

“exploitation approach”. In this situation, the goal is to evaluate the performance degradation of a useful 

link between a transmitter and its receiver, while all the other equipments of the system, to which they 

belong, are operating too. Couplings created between useful link antennas but also those of the other links, 

are potentially disturbing, and are the core of the problem here. They are at the origin of incompatibilities 

that may appear. The objective is then to minimize these couplings as well as possible. The second 

approach is applied when the studied system does not exist yet. It corresponds to the “design approach”. In 

this situation, the goal is to evaluate the system performances according to the radio characteristics of 

electronic components of the equipments. The aim is then to parameterize the characteristics of 

transmission/arrival stages in order to make these equipments as compatible as possible with the new 

system, even if it requires changing their primary specifications. 

Interferences between radiocommunication equipments can be due not only to their frequency plans 

but also to their radio characteristics, for instance, the selectivity of the receiver filters. In order to model 

such a kind of disturbance phenomena, we have to define transmitters and receivers more precisely than 

using simple “black box” models with just input/output ports. Indeed, we have to go further and take into 

account the internal and analogical structure of these electronic radio equipments. It appears that 

superheterodyne architecture is the most widespread, not only for transmitters but also for receivers. That 

is why we have decided to select the superheterodyne architecture for modelling the internal structure of 

all these devices. The main characteristics of each stage of the chain, that is to say of each electronic 

component, are user controlled. 

The models are limited to the physical layer of the equipments. The protocols of the MAC layer or, in 

other words, the management of the message traffic within the network, are not modelled directly here. 

Then, for modelling the protocols, we have performed statistical computations based on the Monte Carlo 

method [1]. We consider that, at time t, the frequency as well as the relative time positioning (slotting) of 

the signals within the system are pseudo-random variables. The interference calculation methods 

elaborated here aim at temporally slicing the messages traffic of the system into “instantaneous 

configurations” during which we consider that signals are stationary. With such a method, we are able to 

analyze systems from the simplest ones, in which each transmitter or receiver operates with its own fixed 

frequency, to the most complex, called “heterogeneous” or “multi waveforms”, involving signals with 

different waveforms and even with a frequency hopping mode, as the system in Fig. 1. 

 

 

Figure 1: “Multi  waveforms” system 
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We have built a central management tool that gets the models output data and uses calculation 

methods to provide, at the end of the simulation, the studied system performance estimation. We will 

explore these models and methods in part 3 and part 4. 
 
3. SIMULATION MODELS 

3.1. Transmitter and receiver models 
The transmitter and receiver models are based on superheterodyne architecture as it was already mentioned. 

These models are “parametric” and provide respectively the transmitted signal and susceptibility shape curves 

[2], according to the studied interference phenomena. The transmitter model is based on two kinds of 

sub-models. On one hand, its useful spectrum based on numerical and analogical modulation schemes, and on 

the other hand, the modelling of interference phenomena, which are inherent to the transmitters like phase noise, 

harmonics, cross-modulation, saturation... As for the receivers, the disturbance phenomena modelled to 

calculate the various types of their susceptibility curves are, for example, selectivity, saturation, 

cross-modulation... In addition, we have also modelled the phenomenon of intermodulation. 

 

3.2. Antennas, carriers and propagation models 
With regard to the propagation between transmitters and receivers, generic antennas and carriers have 

been modelled. Thus, we can simulate the radiation of these antennas in “operational configuration”, that 

is to say on the studied carrier. Fig.2 shows an example of a carrier model meshing at 327 MHz. This way, 

the precise influence of the carrier on the transmitted fields is taken into account. From radiation patterns, 

a link budget is computed in order to evaluate the decoupling between the various antennas of the system. 

Propagation models are also provided in the simulation.  

 

 

Figure 2: Meshing at 327 MHz of military aircraft model carrying VUHF antenna model on top of vertical 

stabilizer (back, side view) 

 

4. CALCULATION MODELS 
4.1. Slicing into instantaneous frequency configurations method for BER estimation 
While the victim receiver “listens to” its environment to detect the useful signal, the transmitters, of 

the other co-site connections, keep communicating. Those are the potential interferers. In order to 

calculate their impact on the quality of the useful link, the state of interfering signals transmitted by those 
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potential interferers, has to be known at each time step, that is to say, their power at the input port of the 

victim receiver antenna, their frequency and, if the signal is a burst, the slotting of those bursts compared 

to the watch period of the victim receiver. Indeed, if an interfering signal does only exist partly over the 

receiving duration, due to the data traffic state, interference intensity will be lower compared to a 

configuration where the spurious signal is continuous. 

To take into account the impact of signals with a “non continuous” shape, the calculation principle is 

to split the system global state into as many “sub-states” as the number of times that one of the system 

equipments changes its behaviour: for example, carrier change for devices operating in frequency hopping 

mode, or transition from transmitting state to silence state for burst signals. In fact, we decompose the 

system global behaviour into a succession of intermediate states that are each defined by system 

equipments stationary behaviour. Those equipments operate according to a combination of fixed 

frequencies; this is why we call such a “sub-state”, “instantaneous frequency configuration”. We show 

hereafter the various steps of the calculation leading to BER estimation. 

 
4.1.1. Slicing a receiving duration into a stationary state sequence 

The first step of interference calculation consists in slicing the victim receiver duration into as many 

“sub-durations” that there are instantaneous frequency configurations. This slicing operation is directly 

dependent on the signal waveforms and also on their Medium Access Control (MAC). Their waveforms 

are the input data of the algorithm and thus are known. However, as the protocols of their MAC layer are 

not modelled here, we do not know what is the signal state at any time. The solution we have adopted then 

is to make, for each interferer, their operating mode (transmission or silence) pseudo-random as well as 

the time start of their bursts, when the victim receiver starts to listen and detect. In addition, if the 

interferer operates in frequency hopping mode, we also make pseudo-random the frequency of each 

transmitted burst. The problem is thus probabilistic; then the slicing operation do not lead to only one 

result but to an infinity of possible configurations. For example, in Fig. 3, we show two possible 

configurations for one receiving duration, when the victim is tuned on FRX2, while there is two co-site 

interferers operating in frequency hopping mode. 

 

 

Figure 3: Two possible configurations of signals of the system, among an infinity, according to their slotting 

and frequencies 
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Each slicing operation leads to a BER calculation for the receiving duration studied. The objective is 

to determine a distribution of the BER, for each receiving duration (each receiving frequency). To obtain 

this distribution, we apply the slicing method a sufficiently large number of times to get a number of 

samples that ensures the convergence of the Monte Carlo algorithm. The BER calculated for a receiving 

duration corresponds to the expectation of all BER calculated for “sub-durations” (instantaneous 

configurations) resulting from one slicing. More precisely, the final BER is the weighted average of  

“sub-durations” BER which weights are the respective “time-slices” durations, as expressed in (1). 

 

                               ∑
=

×=
ICN

i
iICiIC dBERBERE

1

)(                            (1) 

 

 

Figure 4: Slicing FRX2 receiving duration into NIC instantaneous frequency configurations 

 
Indeed, (1) gives the BER expectation formula of a receiving duration sliced into NIC instantaneous 

frequency configurations, each defined with a sub-duration dIC and a BERIC , as depicted in Fig. 4. 

 

   4.1.2. Calculation of the BER of an instantaneous frequency configuration 

To reach the BER value, we have first to calculate the useful Signal S to Interferer “I” Ratio (SIR). 

“I” corresponds to the spurious signal transmitted by only one of the interferers; it is not the sum of all 

interfering signals, because there is not any reason to add linearly the contributions of all interferers of a 

system in order to estimate the global impact on a connection. Actually, among all the interferers, often 

only one or two of them have a predominant disturbing effect on the studied victim receiver. Based on this 

observation, we adopt the following principle. For one “instantaneous configuration”, we retain only the 

SIR of the predominant interferer. 

SIR is obtained with the confrontation of transmitted interfering signal spectrum curve to victim 

receiver susceptibility curve, which level depends on the sensitivity of the receiver and the chosen 

interference margin. The first step, called amplitude analysis, consists in the calculation of the maximum 

value of the difference between transmitted interfering signal spectrum and victim receiver susceptibility 

curves. It is a fist order calculation that allows us to eliminate quickly low impact interferers and highlight 

the predominant interferer for the studied “instantaneous configuration”. 

Once the predominant interferer identified, we carry out the second SIR calculation, which is more precise 

because it takes into account interfering transmitters and victim receiver bandwidths. Thus, we obtain an 

adjusted and more precise SIR value. Then, we pick up the BER value corresponding to this value of SIR 

from the BER(SIR) curves provided for the studied receiver by literature or obtained by measurements, 

like those carried out for the Bluetooth/WiFi interaction case, explained in part 6. 
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4.1.3. Estimation of the victim receiver BER for a receiving duration 

To estimate the BER for a given receiving duration (receiving frequency), we encode a sampler that 

generates N number of slices of this receiving duration into “instantaneous configurations”. For each 

slicing obtained, the calculation of the BER weighted average is carried out according to the method 

described in the previous paragraphs. We thus get NR values of the BER expectation, as formulated in 

equation (1). We suppose, a priori, that the BER distribution is, for example, Gaussian. We use Python 

Monte Carlo PyMC [3] module, containing the Metropolis Hastings algorithm. This algorithm carries out 

calculations on these NR samples of E(BER) to test the goodness of fit of the observed distribution with 

the theoretical one specified a priori as well as the convergence of its parameters. Finally, we obtain the 

most likely values of the average µ and the standard deviation σ; that is to say the most likely E(BER) 

distribution for a given receiving duration (receiving frequency). 

 

4.1.4. Estimation of the victim receiver BER 

We repeat this process for other receiving durations (receiving frequencies) and also for a sufficiently 

large number of iterations to ensure stability, using Python Monte Carlo (PyMC®) tool [3]. We create a 

new sampler that generates NRX samples of the receiver frequency. Each of these frequencies corresponds 

to a receiving duration. The simulation result for each of those receiving durations is the E(BER) 

distribution already described in this part. Consequently, the sampler provides NRX possible distributions 

of E (BER); that is to say NRX values of µ and σ. We use again PyMC methods to determine, this time, the 

distributions of µ and σ. We have thus evaluated the victim link performance. 

 

4.2. Topological cutting method with Huygens surfaces for decoupling calculations 
Concerning the calculation of decoupling between antennas, the choice is offered to the user between 

the direct method, introduced at the end of part III, and the method of topological cutting thanks to a set of 

Huygens surfaces. Fig. 5 shows an example of the application of this method to calculate spurious signal 

at a victim receiver antenna input. Whereas the first method consists in carrying out only one simulation 

with the whole system, the second one consists in breaking up the total simulation into several 

intermediate simulations of different parts of the system. For applying this method to our EMI analysis, 

we use the specific tools implemented on the software platform called QUERCY [4]. It contains CAD, 
field calculation, meshing software and also all the necessary tools, like equivalent sources calculation 

tool on Huygens surfaces, to apply the topological cutting method. 

 

Figure 5: Topological cutting method with Huygens surfaces 
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5. SIMULATION RESULTS 
For a studied scenario, the first expected simulation results are the transmitted signals as well as 

receiver susceptibility curves. From these curves, the final expected result is the equipment performance 

degradation, either according to the interference phenomena inherent to transmitters and receivers, or 

according to the decoupling between antennas. These results are given in terms of the 

Signal-to-Interference Ratio (SIR) or Bit Error Rate (BER) or even Packets Error Rate (PER). 

 
6. APPLICATION: Bluetooth/WiFi case 

The interference issues between Bluetooth and WiFi, operating both on ISM 2.4 GHz band, are quite 

real and, consequently, lead to a lot of studies like those of the NIST [5] and many others. The 

experimental work carried out on this study case usually consists in measuring throughputs using COTS 

(traditional commercial cellular phone or computer provided with Bluetooth/WiFi technologies). For 

instance, tests carried out by KELLER and MODELSKI [6]. 

Our goal is to measure the BER of a connection, and not a throughput, when there are, in the same 

system, interferer signals which waveform characteristics are necessarily known. Without this information 

about signal radio characteristics, the comparison measures/simulation, in other words the validation, 

would be impossible. The problem is that COTS do not accept to be tested nor configured; we cannot have 

any information about signal characteristics nor control them, like the length and the periodicity of 

transmitted data packets. And these data are input data of the interference calculation algorithm to be 

validated. This is the reason why we have chosen to use specific Bluetooth and WiFi signals generators in 

order to give the user the possibility of choosing the parameters of the system signals. 

 

6.1. The study case, its equipment and configuration 
We use Bluetooth and WiFi signal generators made by Rohde & Schwarz, respectively the 

CMU200 and the SMJ100A [7]. Contrary to the SMJ100A which can be only used as a generator, the 
CMU200 not only makes it possible to establish a Bluetooth connection with any device provided with 

this technology, but also to measure the BER of the link. Consequently, the tests consist in measuring the 

performances degradation of a Bluetooth connection near a WiFi interferer. We set the connection 

between the “piconet” Master, the CMU200, and its Slave, a Bluetooth Module (BM), especially 

configured so that it “accepts” to be tested. We have decided to carry out the tests in free space 

propagation mode by connecting each generator to quarter-wave antennas tuned to 2.4 GHz, located inside 

an anechoic chamber. Another antenna, identical to the others, is used for the Bluetooth module. Fig. 6 

gives a picture of the system composed with these three antennas. 

 

Figure 6: Geometry of the measured configuration 
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Figure 7: Picture of the antennas in an anechoic chamber (CMU200, MJ100A and BM from left to right) 

 
6.2. Measurements results 
The objective is to measure the Bluetooth connection BER as a function of the interfering signal 

power. Initially, we chose Bluetooth signal operating at only one frequency and transmitting 1 ms length 

and 2 ms periodicity data packets. We also test interferences on Bluetooth due to other kind of spurious 

signals like white Gaussian noise, sine or pulses. With all of these tests, we thus can characterize 

Bluetooth connection performance function of signals waveforms, but also quantify the connection quality 

improvement due to frequency hopping mode. 

The curves of Fig. 8 compare the 2.45 GHz Bluetooth connection BER when the interferer is on the one 

hand, an additive Gaussian with noise (AWGN), and on the other hand pulses. The results reveal that pulsed 

signals are more aggressive than AWGN and, in particular, WiFi. Indeed, whereas the BER standard value 

(0.1%) is reached for a SIR almost equal to zero dB when the interferer is an AWGN, this value is reached 

for a spurious signal level approximately 8 dB lower when WiFi is the interferer. The curves of Fig. 9 show 

the performance improvement of a Bluetooth connection when it operates in frequency hopping mode 

compared to the case where it operates in single channel mode, which has the same frequency as the WiFi 

signal one. This improvement value is approximately equal to 2 dB. Fig. 10 displays five cases of 

Bluetooth/WiFi interactions defined by signal duration and periodicity which values are given in table 1. All 

the curves are almost superimposed. Only one dB of difference is obtained between the most constraining 

configuration and the least aggressive one. 

 

TABLE 1 

 Duration (L) and periodicity (T) of packets  

case 1 2 3 4 5 

LBluetooth (ms) 0.339 0.339 0.339 0.339 2.839 

TBluetooth (ms) 1.25 1.25 1.25 1.25 6.25 

LWiFi (ms) 1 1 3.1 3.1 1 

TWiFi (ms) 2 0.1 2 0.1 5 
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Figure 8: Single channel Bluetooth BER function of SIR when the interferer is AWGN (■), WiFi (●), pulses 

(Lp=452 µs, Tp=1.252 ms) (▲), pulses (Lp=100 µs, Tp=200 µs) (▪) at 2.45 GHz 
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Figure 9: Bluetooth BER function of SIR when the interferer is WiFi at 2.447 GHz and Bluetooth is in single 

channel mode at 2.447 GHz (■), in frequency hopping mode (●), in reduced mode (▲) 
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Figure 10: Single channel Bluetooth BER function of SIR when the interferer is WiFi at 2.447 GHz in case 1 

(■),case 2 (●), case 3 (▲), case 4 (▪) et case 5 (▼) 
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7. CONCLUSIONS 
From these measurements, it may be concluded that quality degradation of a Bluetooth connection due 

to a WiFi signal increases when the difference between the useful signal and the interfering signal, 

received by the victim Bluetooth antenna, is lower than approximately 10 dB. Neither the frequency 

hopping mode, nor the data packets configuration, significantly modify the result. However, WiFi signal 

power is higher than Bluetooth signal one, up to 20 dB higher. Consequently, it appears that WiFi is very 

likely to cause interferences to Bluetooth. This observation confirms that Bluetooth/WiFi interaction is a 

judicious study case for the next step of our work which will consist in validating our Electromagnetic 

Interference analysis tool, that has been described in this paper. 
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Abstract — We consider the solution of electromagnetics problems formulated with
surface integral equations (SIE) and discretized with low-order basis functions, such as
the Rao-Wilton-Glisson functions. Normal and mixed SIE formulations involving well-
tested identity operators are significantly inaccurate compared to tangential formulations.
We show that the well-tested identity operator is a major error source that contaminates
the accuracy of SIE formulations. Due to excessive discretization error of the identity
operator, matrix equations obtained with tangential, normal, and mixed formulations
are incompatible. We also show that, in an iterative solution of a normal or mixed
formulation, the minimization of the residual error involves a breakpoint, where a further
reduction of the residual error does not improve the solution in terms of compatibility
with the corresponding tangential formulation. This breakpoint corresponds to the last
useful iteration, where the accuracy of the solution is saturated and a further reduction
of the residual error is practically unnecessary.

1. INTRODUCTION

Surface integral equations (SIE) are commonly used for the solution of scattering and radiation
problems in electromagnetics [1]. Complicated problems involving three-dimensional metallic and/or
homogeneous dielectric structures are formulated rigorously by defining equivalent current on surfaces
and applying the boundary conditions. Depending on the testing scheme and the boundary conditions
used, there are four basic SIEs, namely, the tangential electric-field integral equation (T-EFIE), the
normal electric-field integral equation (N-EFIE), the tangential magnetic-field integral equation (T-
MFIE), and the normal magnetic-field integral equation (N-MFIE) [2]. Various SIE formulations can
be derived by using diverse combinations of SIEs. For numerical solutions, those formulations are
discretized by expanding the equivalent currents and using the method of moments. The resulting
dense matrix equations can be solved iteratively by using a Krylov subspace algorithm, which can be
accelerated via fast solvers, such as the multilevel fast multipole algorithm [3].

SIE formulations can be categorized into three groups, i.e., tangential, normal, and mixed formulations,
depending on their contents. Tangential formulations involve T-EFIE and/or T-MFIE, while normal for-
mulations involve N-EFIE and/or N-MFIE. Mixed formulations are obtained by combining tangential
and normal formulations, and they contain at least one tangential equation (T-EFIE and T-MFIE) and
one normal equation (N-EFIE and N-MFIE). Using a Galerkin scheme for the discretization, normal
and mixed formulations contain well-tested identity operators. It is well-known that matrix equa-
tions involving well-tested identity operators are diagonally dominant and they are well-conditioned.
Therefore, iterative solutions of normal and mixed formulations are usually more efficient than the
solutions of tangential formulations, which do not contain well-tested identity operators. On the other
hand, recent studies show that tangential formulations are significantly more accurate than normal

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Research Grants
105E172 and 107E136, by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program
(LG/TUBA-GEBIP/2002-1-12), and by contracts from ASELSAN and SSM.
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and mixed formulations, especially when they are discretized with low-order basis functions [4]–[8],
such as the Rao-Wilton-Glisson (RWG) functions [9]. Discrepancy between the results obtained with
tangential, normal, and mixed formulations can be reduced by employing more appropriate, especially
higher-order, basis functions [10]–[17]. Investigations on the accuracy of SIE formulations also show
that the source of the error is the identity operator [5],[18],[19]. Specifically, regularization of the
identity operator improves the accuracy of N-MFIE for metallic objects [5],[19].

In this paper, we investigate the contamination of the accuracy of SIEs with the excessive discretization
error of the identity operator. By setting up a computational experiment based on nonradiating currents,
we prove that the identity operator is truly a major error source in SIE formulations. Since the
discretization of the identity operator contaminates the accuracy of normal and mixed formulations,
matrix equations obtained with tangential, normal, and mixed formulations for the same problem are
incompatible. Then, the iterative solution of a normal or mixed formulation involves a breakpoint,
where the compatibility of the solution with the corresponding tangential formulation is saturated. We
show that this breakpoint corresponds to the last useful iteration, where the accuracy of the solution
cannot be improved anymore.

2. SURFACE INTEGRAL EQUATION FORMULATIONS

Consider a homogeneous domain Du bounded by a closed surface Su and that may extend to infinity.
T-EFIE is derived by directly testing the boundary condition for the tangential electric field on the
surface, i.e.,

t̂ ·
{
Tu{J}(r) − η−1

u Ku{M}(r) − Ωo(r)
4π

η−1
u I×n{M}(r)

}
= −t̂ · η−1

u Einc(r), (1)

where Ωo(r) is the external solid angle at the observation point r ∈ Su, t̂ is any tangential unit vector,
Einc(r) is the incident electric field produced by the external sources inside Du, and ηu =

√
μu/εu

is the wave impedance. In (1), J(r) = n̂ × H(r) and M (r) − n̂ × E(r) are equivalent surface
currents, where n̂ is the normal vector pointing into Du. Operators are defined as

Tu{X}(r) = iku

∫
Su

dr′
[
X(r′) +

1
k2

u

∇′ · X(r′)∇
]
gu(r, r′) (2)

Ku{X}(r) =
∫

Su,PV

dr′X(r′) ×∇′gu(r, r′) (3)

I×n{X}(r) = n̂ × I{X}(r) = n̂ × X(r), (4)

where PV indicates the principal value of the integral, ku = ω
√

μuεu is the wavenumber, and gu(r, r′)
denotes the homogeneous-space Green’s function defined as

gu(r, r′) =
exp (ikuR)

4πR

(
R = |r − r′|

)
. (5)

N-EFIE is derived similarly by testing the boundary condition for the electric field projected onto the
surface via n̂, i.e.,

n̂ ×
{
Tu{J}(r) − η−1

u Ku{M}(r) − Ωo(r)
4π

η−1
u I×n{M}(r)

}
= −n̂ × η−1

u Einc(r). (6)

Finally, T-MFIE and N-MFIE are derived by testing the boundary condition for the tangential magnetic
field, i.e.,{

t̂·
n̂×

}{
Tu{M}(r) + ηuKu{J}(r) +

Ωo(r)
4π

ηuI×n{J}(r)
}

= −
{

t̂·
n̂×

}
ηuHinc(r), (7)

where Hinc(r) is the incident magnetic field.
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Table 1. Surface Integral Equation Formulations

Formulation Integral Equation Content Object Type
T-EFIE T-EFIE Metallic
N-MFIE N-MFIE Metallic
T-N-CFIE T-EFIE+N-MFIE Metallic

TN-N-CFIE T-EFIE0+N-EFIE0+N-MFIE0 Dielectric
T-EFIEI+N-EFIEI+N-MFIEI

T-PMCHWT and CTF T-EFIE0+T-EFIEI Dielectric
T-MFIE0+T-MFIEI

NMF and MNMF N-MFIE0+N-MFIEI Dielectric
N-EFIE0+N-EFIEI

JMCFIE T-EFIE0+T-EFIEI+N-MFIE0+N-MFIEI Dielectric
T-MFIE0+T-MFIEI+ N-EFIE0+N-EFIEI

When the surface of Du is a perfect electric conductor (PEC), the tangential component of the total
electric field vanishes on the surface (M = 0). Then, the scattering or radiation problem can be
formulated and solved with T-EFIE, N-MFIE, T-MFIE, or N-MFIE, without using any combination.
However, to avoid the internal resonance problem, it is necessary to combine EFIE and MFIE leading
to a combined-field integral equation (CFIE) [20]. Specifically, a mixed formulation T-N-CFIE, which
is obtained by the convex combination of T-EFIE and N-MFIE, is commonly used in the literature [3].

For scattering and radiation problems involving dielectric objects, integral equations are derived
for both inner and outer media. These equations should be solved simultaneously to obtain J(r)
and M (r). Similar to formulations of PEC objects, EFIE and MFIE can be combined in vari-
ous ways to derive CFIE formulations, which are immune to the internal resonance problem. For
example, TN-N-CFIE, which is obtained by combining T-EFIE, N-EFIE, and N-MFIE, was intro-
duced for stable solutions [2]. On the other hand, many different formulations for dielectric ob-
jects are obtained by linearly combining the inner and outer equations while solving EFIE, MFIE,
or their combinations simultaneously. For example, the tangential Poggio-Miller-Chang-Harrington-
Wu-Tsai (T-PMCHWT) [1],[21],[22] formulation involves simultaneous solutions of T-EFIE and T-
MFIE. A similar coupling of N-EFIE and N-MFIE leads to the well-known normal Müller for-
mulation (NMF) [23]. Recently, these two formulations are improved by scaling EFIE and MFIE
appropriately, leading to the combined tangential formulation (CTF) [13] and the modified normal
Müller formulation (MNMF) [24], respectively. Although these formulations are free of the internal
resonance problem, mixed formulations involving both tangential and normal equations are derived to
obtain more stable solutions. For example, the electric and magnetic current combined-field integral
equation (JMCFIE) [25], which involves all four equations, i.e., T-EFIE, N-EFIE, T-MFIE, and N-
MFIE, provides fast iterative solutions, and it is preferable especially when the problem size is
large [26]. Finally, electromagnetics problems involving composite dielectric-metallic structures can
be formulated via hybrid formulations, which are obtained by applying different formulations for
different parts of the objects [27]. Table I lists some of the surface formulations that are commonly
used in the literature.

3. DISCRETIZATION

For numerical solutions, SIE formulations are discretized by using basis and testing functions. Equiv-
alent currents are expanded in a series of basis functions bn(r), i.e.,

J(r) =
N∑

n=1

x[n]bn(r) (8)

EWS 2008                                                                                                                                                                  6-3



M (r) =
N∑

n=1

y[n]bn(r), (9)

where x and y are arrays of unknown coefficients. Testing the integral equations using a set of testing
functions tm(r), matrix equations are constructed and solved to calculate the unknown coefficients.
Four basic matrix equations are derived as

T̄
T
u · x − η−1

u K̄
T
u · y − 1

2
η−1

u Ī
×n · y = −η−1

u vE (10)

T̄
N
u · x − η−1

u K̄
N
u · y +

1
2
η−1

u Ī · y = −η−1
u v×n

E (11)

T̄
T
u · y + ηuK̄

T
u · x +

1
2
ηuĪ

×n · x = −ηuvH (12)

T̄
N
u · y + ηuK̄

N
u · x − 1

2
ηuĪ · x = −ηuv×n

H , (13)

for T-EFIE, N-EFIE, T-MFIE, and N-MFIE, respectively. The interaction between the mth testing
function tm(r) and the nth basis function bn(r) are calculated for different operators (K, T , and I)
and testing types (T and N) as

KT
u [m,n] =

∫
Sm

drtm(r) ·
∫

Sn,PV
dr′bn(r′) ×∇′gu(r, r′) (14)

KN
u [m,n] =

∫
Sm

drtm(r) · n̂ ×
∫

Sn,PV
dr′bn(r′) ×∇′gu(r, r′) (15)

T T
u [m,n] = iku

∫
Sm

drtm(r) ·
∫

Sn

dr′bn(r′)gu(r, r′)

− i

ku

∫
Sm

drtm(r) ·
∫

Sn

dr′∇′ · bn(r′)∇′gu(r, r′) (16)

TN
u [m,n] = iku

∫
Sm

drtm(r) · n̂ ×
∫

Sn

dr′bn(r′)gu(r, r′)

− i

ku

∫
Sm

drtm(r) · n̂ ×
∫

Sn

dr′∇′ · bn(r′)∇′gu(r, r′) (17)

I[m,n] =
∫

Sm

drtm(r) · Ωo(r)
2π

bn(r) (18)

I×n[m,n] =
∫

Sm

drtm(r) · n̂Ωo(r)
2π

× bn(r), (19)

where Sm is the spatial support of the mth basis or testing function for m = 1, 2, ..., N . Elements of
the right-hand-side (RHS) vectors in (10)–(13) are obtained by testing the incident electromagnetic
fields, i.e.,

vE [m] =
∫

Sm

drtm(r) · Einc(r) (20)

v×n
E [m] =

∫
Sm

drtm(r) · n̂ × Einc(r) (21)

vH [m] =
∫

Sm

drtm(r) · Hinc(r) (22)

v×n
H [m] =

∫
Sm

drtm(r) · n̂ × Hinc(r). (23)

Using a Galerkin scheme and choosing the same set of functions as basis and testing functions, the
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tangential equations, i.e., T-EFIE and T-MFIE, contain well-tested T operators, while the normal
equations, i.e., N-EFIE and N-MFIE, contain well-tested K and I operators [2]. Then, tangential for-
mulations involving T-EFIE and/or T-MFIE contain well-tested T operators, while normal formulations
involving N-EFIE and/or N-MFIE contain well-tested K and I operators [13]. In mixed formulations,
such as CFIE and JMCFIE, all kinds of operators are well-tested. In general, well-tested identity
operators lead to well-conditioned matrix equations, which are easy to solve iteratively [28]. Therefore,
for the efficiency of the solutions, normal and mixed formulations are preferable, especially when
problems involve large objects discretized with large numbers of unknowns [26],[29],[30]. On the other
hand, recent studies show that normal and mixed formulations are significantly inaccurate compared
to tangential formulations [4]–[8], especially when they are discretized with low-order basis functions,
such as RWG functions. Accuracy of normal and mixed formulations could be improved to the levels
of tangential formulations by employing higher-order basis functions [13],[16],[17]. Investigations also
show that the excessive error is caused by the well-tested identity operators [5],[18],[19]. In addition
to the conditioning of the matrix equations, the identity operator seems to play a key role in the
accuracy of the solutions via SIE formulations.

Using RWG functions on planar triangles, discretization of the well-tested identity operator is simple.
The integral

I[m,n] =
∫

Sm

drtm(r) · Ωo(r)
2π

bn(r) =
∫

Sm

drtm(r) · bn(r) (24)

can be evaluated accurately by using a low-order Gaussian quadrature rule. On the other hand, the
identity operator behaves like an operator with a highly-singular kernel [5],[18]. This alternative
interpretation can be understood when (24) is rewritten as a double integral over the testing and basis
functions as

Imn =
∫

Sm

drtm(r) ·
∫

Sn

dr′δ(r, r′)bn(r′), (25)

where δ(r, r′) is a Dirac delta function representing a strong singularity. Consequently, the discretiza-
tion of the identity operator may cause an unexpectedly large error, although its discretization involves
very small or no error.

To demonstrate the inaccuracy of normal and mixed formulations compared to tangential formulations,
we present the solution of electromagnetics problems involving canonical objects. Fig. 1 presents the
results of a radiation problem involving a 1 cm × 1 cm × 1 cm PEC box located at the origin. As
depicted in Fig. 1, the box is excited with a Hertzian dipole oriented in the z direction and located
inside the box at z = 0.35 cm. Ideally, the radiated field outside the box should be zero due to the
shielding provided by the closed PEC surface. We calculate the radiated field in the far zone on the
x-y plane at r = (3 meters, π/2, φp), where φp = (p − 1)π/180 for p = 1, 2, ..., 360. The relative
error is defined as the 2-norm of the total electric field divided by the 2-norm of the incident electric
field, i.e.,

Δ =

√√√√
∑360

p=1 |E(3, π/2, φp)|2∑360
p=1 |Einc(3, π/2, φp)|2

(
φp = (p − 1)π/180

)
. (26)

The total electric field is obtained by adding the incident field due to the Hertzian dipole and the
secondary field due to the induced electric current on the cube. Fig. 1 presents the relative error
as a function of frequency from 20 GHz to 60 GHz. In this range of frequency, the size of the
box varies from 0.67λ to 2λ. The radiation problem is discretized with 7200, 28,800, 115,200, and
460,800 unknowns, and solved by MLFMA without diagonalization [31]. We observe that T-N-CFIE =
0.2× T-EFIE + 0.8 ×N-MFIE is significantly less accurate than T-EFIE. In order to obtain the same
accuracy, the number of unknowns of T-N-CFIE should be 16 times larger than that of T-EFIE.
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Fig. 1. Solutions of a radiation problem involving a 1 cm × 1 cm × 1 cm PEC box located at the origin and excited by a
Hertzian dipole located inside the box at z = 0.35 cm. Relative error defined in (26) is plotted as a function of frequency
from 20 GHz to 60 GHz.
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Fig. 2. Solutions of a scattering problem involving a dielectric sphere of radius 6λ illuminated by a plane wave. Relative
permittivity of the sphere is 2.0 and it is located in free space. (a) Normalized bistatic RCS (RCS/λ2) and (b) relative error
defined in (27) for different formulations as a function of the bistatic angle.

Fig. 2 presents the solution of a scattering problem involving a dielectric sphere of radius 6λ, where
λ is the wavelength outside the sphere (free space). The relative permittivity of the sphere is 2.0
and it is illuminated by a plane wave. The scattering problem is discretized with 264,006 unknowns
and solved by MLFMA with three digits of accuracy. Fig. 2(a) presents the normalized radar cross
section (RCS/λ2 in dB) values on the E-plane as a function of the observation angle from 0◦ to 180◦,
where 0◦ corresponds to the forward-scattering direction. Computational values obtained with CTF
and MNMF are compared with analytical values obtained by a Mie-series solution. We observe that
the tangential formulation CTF provides more accurate results than the normal formulation MNMF.
For more quantitative information, Fig. 2(b) presents the relative error in the computational results
with respect to the reference analytical solution. In addition to CTF and MNMF, we also consider
the error for the mixed formulation JMCFIE. The relative error as a function of bistatic angle ϕ is
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defined as

Λ(ϕ) = lim
r→∞

|E∞C (ϕ) − E∞A (ϕ)|
maxϕ |E∞A (ϕ)| , (27)

where E∞C (ϕ) and E∞A (ϕ) are computational and analytical values of the far-zone electric field, i.e.,

E∞(ϕ) = lim
r→∞

rE(r, ϕ). (28)

The maximum value of the relative error is also indicated by a horizontal line in the figure for each
formulation. Fig. 2(b) shows that CTF provides the most accurate results, while MNMF is significantly
inaccurate compared to CTF. Being a mixed formulation, accuracy of JMCIE is between CTF and
MNMF.

4. EXCESSIVE DISCRETIZATION ERROR OF THE IDENTITY OPERATOR

In this section, we prove that the identity operator is truly a major error source, which contaminates
the accuracy of SIE formulations. This is achieved by using the nonradiating property of the tangential
incident fields on arbitrary surfaces [32],[33], i.e.,

ηuTu{J inc}(r) −Ku{M inc}(r) +
Ωi(r)
4π

I×n{M inc}(r) = 0 (29)

1
ηu

Tu{M inc}(r) + Ku{J inc}(r) − Ωi(r)
4π

I×n{J inc}(r) = 0, (30)

where Ωi(r) is the internal solid angle and {J inc(r),M inc(r)} = {n̂ × H inc(r),−n̂ × Einc(r)}.
Nonradiating currents are expanded in a series of RWG functions, i.e.,

J inc(r) =
N∑

n=1

xinc[n]bn(r) (31)

M inc(r) =
N∑

n=1

yinc[n]bn(r), (32)

by using two methods. First, we consider an identity equation in the form of[
I 0
0 I

]
·
[

n̂ × H inc

−n̂ × Einc

]
=

[
n̂ × H inc

−n̂ × Einc

]
, (33)

which can be discretized as [
Ī 0
0 Ī

]
·
[

xinc

yinc

]
=

[
v×n

H
−v×n

E

]
. (34)

This method involves well-tested identity operators. The second method is based on the discretization
of (29) and (30), i.e., [

T̄
T
u −η−1

u K̄
T
u

ηuK̄
T
u T̄

T
u

]
·
[

xinc

yinc

]
= −1

2

[
η−1

u vE

ηuvH

]
, (35)

which involves tangentially-tested T and K operators and does not contain any identity operator.

Fig. 3 presents the results of experiments involving a sphere of radius 0.5λ and a cube with edges
of 0.5λ. Both objects are illuminated by a plane wave with unit amplitude. Nonradiating currents
are expanded in a series of RWG functions on the objects using the two methods described above,
i.e., using well-tested identity operators and using integro-differential T and K operators. Expansion
coefficients are calculated and used to compute the radiated fields in the far zone on the E-plane.
Fig. 3 presents the far-zone electric field, i.e., E∞(ϕ) as a function of bistatic angle ϕ. Ideally,
{J inc(r),M inc(r)} should not radiate and E∞(ϕ) should be zero. Fig. 3(a) shows that the value
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Fig. 3. Far-zone electric field due to nonradiating currents on (a) a sphere of radius 0.5λ and (b) a cube with edges of
0.5λ. Nonradiating currents discretized and expanded in a series of RWG functions by using two different methods involving
well-tested identity operators and tangentially-tested integro-differential operators.

of E∞(ϕ) drops as the mesh size decreases from λ/10 to λ/40 for the sphere. On the other hand,
the two methods offer different levels of accuracy. Given a mesh size, error is smaller with the
second method using the integro-differential operators, compared to the first method using well-tested
identity operators. Fig. 3(b) presents similar results for the cube. The value of E∞(ϕ) decreases as
the triangulation becomes finer; but the first method generates larger error than the second method.
We note that the first and second expansion methods are related to the solutions of electromagnetics
problems with normal/mixed and tangential formulations, respectively, where the total currents (instead
of nonradiating currents) are expanded in a series of basis functions.

5. CONTAMINATION OF THE ACCURACY OF SURFACE FORMULATIONS

Excessive discretization error of the identity operator contaminates the accuracy of normal and mixed
formulations. Therefore, matrix equations obtained with tangential, normal, and mixed formulations
for the same problem are incompatible. For example, consider the solution of an electromagnetics
problems involving a closed PEC object. The problem can be formulated with T-EFIE and N-MFIE.
Due to excessive discretization error of the identity operator in N-MFIE, solutions obtained with
T-EFIE and N-MFIE are not equal, i.e.,

−η−1
u

{
T̄

T
u

}−1
· vE = xE �= xM = −

{
K̄

N
u − 0.5Ī

}−1
· v×n

H , (36)

even when the solutions are free of internal resonances. We write

xM = xE + ΔxME (37)

and the discrepancy between the solutions is interpreted as the error in N-MFIE. Consider the solution
of the same problem with T-N-CFIE = α × T-EFIE + (1 − α) × N-MFIE, i.e.,

xC = −
{
αηuT̄

T
u + (1 − α)

(
K̄

N
u − 0.5Ī

)}−1
·
{
αvE + (1 − α)v×n

H

}
, (38)
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where 0 ≤ α ≤ 1. We note that

xC =
{
αηuT̄

T
u + (1 − α)

(
K̄

N
u − 0.5Ī

)}−1
·
{
αηuT̄

T
u · xE + (1 − α)

(
K̄

N
u − 0.5Ī

)
· xM

}

=
{
αηuT̄

T
u + (1 − α)

(
K̄

N
u − 0.5Ī

)}−1
·
{
αηuT̄

T
u · xE + (1 − α)

(
K̄

N
u − 0.5Ī

)
· xE

}

+
{
αηuT̄

T
u + (1 − α)

(
K̄

N
u − 0.5Ī

)}−1
· (1 − α)

(
K̄

N
u − 0.5Ī

)
· (xM − xE)

= xE + ΔxCE , (39)

where

ΔxCE =
{
αηuT̄

T
u + (1 − α)

(
K̄

N
u − 0.5Ī

)}−1
· (1 − α)

(
K̄

N
u − 0.5Ī

)
· ΔxME . (40)

Equations (39) and (40) describe how the T-N-CFIE solution is contaminated with the inaccuracy of
N-MFIE due to the discretization error of the identity operator.

Consider an iterative solution of T-N-CFIE, where the residual error is minimized, i.e.,

rC = αvE + (1 − α)v×n
H +

{
αηuT̄

T
u + (1 − α)

(
K̄

N
u − 0.5Ī

)}
· x̃C → 0. (41)

Rearranging the terms in (41), we obtain

rC = αrC→E + (1 − α)rC→M , (42)

where

rC→E = vE + ηuT̄
T
u · x̃C (43)

rC→M = v×n
H +

(
K̄

N
u − 0.5Ī

)
· x̃C (44)

are residual vectors obtained by testing the T-N-CFIE solution in T-EFIE and N-MFIE systems,
respectively. When the norm of rC in (41) is minimized, norms of rC→E and rC→M are not
necessarily minimized. Instead, rC→E and rC→M are scaled with respect to each other, i.e.,

rC→E ≈ −(1 − α)
α

rC→M . (45)

Then, an iterative solution of T-N-CFIE involves a breakpoint, where a further reduction of the
residual error does not improve the compatibility of the solution with T-EFIE and N-MFIE. In general,
iterative solutions of normal and mixed formulations discretized with low-order basis functions involve
breakpoints, where the compatibility of the solution with the corresponding tangential formulation
is saturated. More importantly, a breakpoint for the compatibility with the tangential formulation
corresponds to the last useful iteration to obtain the highest possible accuracy with a normal or mixed
formulation.

As an example, we consider the solution of a scattering problem involving a λ × λ × λ PEC cube
located at the origin. The cube is discretized with 2052 RWG functions and illuminated by a plane
wave propagating in the −x direction with the electric field polarized in the y direction. The scattering
problem is solved with T-EFIE and T-N-CFIE (α = 0.2) formulations. Matrix elements are calculated
with a maximum of 1% error and solutions are performed iteratively by using the biconjugate-gradient-
stabilized (BiCGStab) algorithm [34]. Fig. 4(a) presents the iterative solution of T-N-CFIE, where the
2-norm of the residual vector rC is plotted with respect to BiCGStab iterations. We also plot the norms
of rC→E and rC→M denoted by “T-N-CFIE to T-EFIE” and “T-N-CFIE to N-MFIE”, respectively.
The residual error is reduced to below 10−6 in 20 iterations. However, compatibility of the T-N-CFIE
solution with the T-EFIE and N-MFIE systems is saturated at about 7th iterations. Fig. 4(b) presents
both two solutions with T-EFIE and T-N-CFIE. Using T-EFIE, the residual error is reduced to below
10−6 in more than 300 iterations. In addition to residual errors, we calculate the error in the near-zone
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Fig. 4. Iterative solutions of a scattering problem involving a λ×λ×λ PEC cube illuminated by a plane wave propagating
in the −x direction with the electric field polarized in the y direction. (a) Residual errors with respect to iterations for
T-N-CFIE. (b) Residual error and near-zone error defined in (46) with respect to iterations for T-N-CFIE and T-EFIE.

electric field at each iteration. The total electric field, which is obtained by combining the incident
plane wave and the secondary field due to the induced electric current, is sampled inside the cube
at 19 × 19 = 361 regularly-spaced points on the z = 0 plane. The total electric field should be zero
inside the cube due to the shielding effect of the perfectly-conducting closed surface. Then, we define
the near-zone error as

Υ =

√√√√
∑361

p=1 |E(xp, yp, 0)|2∑361
p=1 |Einc(xp, yp, 0)|2

(
− λ/2 ≤ xp, yp ≤ λ/2

)
. (46)

As depicted in Fig. 4(b), the near-zone error in the T-EFIE solution is saturated at about 150th iteration,
and the minimum achievable error is approximately 2.8× 10−3. Accuracy of the solution is saturated
since there are various error sources, such as the numerical calculation of the matrix elements, and
the overall error cannot be minimized by only reducing the residual error. In the T-N-CFIE solution,
however, the minimum achievable error is directly related to the compatibility of the solution with the
T-EFIE formulation. In this case, the near-zone error is saturated at 7th iteration, which corresponds
to the breakpoint in Fig. 4(a), and the accuracy cannot be improved anymore. Consequently, a further
reduction of the residual error is practically unnecessary.

6. CONCLUSION

In this study, we present our investigations on the contamination of SIE formulations with the excessive
discretization error of the identity operator. Normal and mixed formulations involving well-tested
identity operators are significantly inaccurate compared to tangential formulations, especially when
they are discretized with low-order basis functions. By performing a computational experiment based
on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the
identity operator is a major error source. Since normal and mixed formulations are contaminated
with the excessive discretization error of the identity operator, matrix equations obtained with SIE
formulations are incompatible. Then, minimization of the residual error during an iterative solution of
a normal or mixed formulation involves a breakpoint, where the compatibility of the solution with the
corresponding tangential formulation cannot be enhanced anymore. We show that the compatibility of
a solution with a tangential formulation is an important indicator to determine the last useful iteration
for the highest possible accuracy offered by SIE formulations.
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[16] Ö. Ergül and L. Gürel, “Improving the accuracy of the magnetic field integral equation with the linear-linear
basis functions,” Radio Sci., vol. 41, RS4004, doi:10.1029/2005RS003307, July 2006.
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Abstract — We improve the convergence behaviour of the two commonly used
integral-equation formulations of dielectric problems, namely, the combined tangential
formulation and the electric and magnetic current combined-field integral equation, using
iterative block preconditioners, which are obtained from approximate block solutions
of the near-field matrix system. The effectiveness of the proposed preconditioners is
demonstrated on large dielectric problems.

1. INTRODUCTION
Many real-life problems in computational electromagnetics necessitate the use of integral-equation
formulations of dielectric problems, such as simulations of photonic crystals [1], development of
effective lenses [2], and optical analysis of blood for blood-related diseases [3]. Some recently
proposed formulations for dielectrics that are suitable for iterative solutions include the combined
tangential formulation (CTF) and the electric and magnetic current combined-field integral equa-
tion (JMCFIE). These two formulations are of utmost interest since CTF yields more accurate
scattering results and JMCFIE yields better-conditioned systems than other formulations [9].

Integral-equation formulations of dielectric problems are obtained by simultaneous discretization
of the electric and magnetic surface currents and result in block-partitioned linear systems in the
form [

Z11 Z12

Z21 Z22

]
·
[

aJ

aM

]
=

[
v1

v2

]
(1)

or
Z · a = v, (2)

where aJ and aM are the coefficient vectors of the basis functions expanding the electric
and magnetic currents, respectively, and v1,2 represent excitation vectors obtained by testing
the incident fields. Iterative solutions of the resulting dense systems become feasible with the
multilevel fast multipole algorithm (MLFMA) [4], which performs a matrix-vector multiplication
of each block in (1) in O(n log n) complexity for a block of size n. However, iterative solutions
of such block-partitioned matrices often suffer from slow convergence, due to highly indefinite
nature of resulting matrices. In Fig. 1, we depict the spectra of the Z matrix and its dense matrix
blocks in the complex plane, for a sphere problem with 0.5λ radius and a dielectric constant of
4.0. The matrices of both formulations are highly indefinite (the eigenvalues are distributed in
the left half-plane), hence it is difficult to achieve convergence without preconditioning [10]. For
CTF, there are many eigenvalues close to the origin, which makes the convergence of CTF more
difficult than JMCFIE [5]. Hence, effective preconditioners should be applied to these systems in
order to increase robustness and efficiency.

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Research
Grant 105E172, by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program
(LG/TUBA-GEBIP/2002-1-12), and by contracts from ASELSAN and SSM.
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Fig. 1. The spectra of the system matrix and its blocks for (a) CTF and (b) JMCFIE on a sphere problem with 1,860
unknowns. The inside of the sphere has a dielectric constant of 4.0. Note that Z11 = Z22 for these two formulations.

2. BLOCK PRECONDITIONERS FOR DIELECTRIC FORMULATIONS
Preconditioning refers to finding a suitable matrix M that approximates the system matrix Z,
for which the solution of the system

M · u = b (3)

is cheaper compared to the solution of the original system (2). Given the input vector b, the
solution vector u is required in each step of the iterative solver. In this way, instead of the
original system, one of the two preconditioned systems

M
−1 ·Z · a = M

−1 · v (4)

or
(Z ·M−1) · (M · a)

= v (5)

can be solved, for left or right preconditioning, respectively. The better the preconditioner M
approximates the matrix Z, the faster the convergence is. However, better approximation comes
with higher construction and application costs. Hence, a balance should be struck between the
approximation level and the efficiency, so that the matrix system can be solved rapidly and reliably.

MLFMA decomposes the system matrix into its far-field and near-field components as
[
Z11 Z12

Z21 Z22

]
=

[
ZNF

11 ZNF
12

ZNF
21 ZNF

22

]
+

[
ZFF

11 ZFF
12

ZFF
21 ZFF

22

]
(6)

or
Z = ZNF + ZFF , (7)

where the far-field matrix ZFF is not stored in the memory and the application of ZFF to a vector
is computed on the fly. Hence, we use the near-field matrix for preconditioning, i.e., M = ZNF .
For the solution of the system (3), the Schur complement reduction method is used [10]. This
method reduces the solution of the block-partitioned system

[
ZNF

11 ZNF
12

ZNF
21 ZNF

22

]
·
[
x
y

]
=

[
f
g

]
(8)
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Fig. 2. Illustration of the application of IBP in a step of an iterative solver.

into the solutions of
ZNF

11 · x = f ′ (9)

and
S · y = g′, (10)

where
f ′ = f −ZNF

12 · y, (11)

S = ZNF
22 −ZNF

21 · (ZNF
11

)−1 ·ZNF
12 (12)

is the Schur complement matrix, and

g′ = g −ZNF
21 · (ZNF

11

)−1 · f . (13)

Since the inversion of the sparse matrix ZNF
11 is unfeasible, we approximate the inverse of ZNF

11
with a sparse approximate inverse (SAI) of ZNF

11 [8] in Eqs. (12) and (13). Then, solutions of
(9) and (10) are approximated by a few iterations of the generalized minimal residual method
(GMRES) solver. We call these preconditioning solutions inner solutions and the preconditioning
scheme the iterative block preconditioner (IBP). Note that we do not need to compute and store
the Schur complement matrix S; we only have to provide the application of S to a vector in
each step of the inner iterative solver of (10).

However, there is no guarantee that the solutions of these systems will be acquired fast enough.
An efficient way to accelerate the convergence of these solutions is to use the available SAI of
ZNF

11 as a preconditioner for (9) and (10). We note that for CTF and JMCFIE, ZNF
11 = ZNF

22 ,
hence SAI of ZNF

11 serves as a useful preconditioner for (10), assuming that ZNF
22 is the dominant

term in the Schur complement matrix. The application of IBP in a step of an iterative solver is
illutrated in Fig. 2. Since IBP requires the solution of two systems for each iterative step, we
need to use a flexible solver for the solution of (1) [6].

In Table 1, we evaluate the performance of the SAI preconditioner for the solutions of (9) and
(10), where we compare the number of iterations obtained with the SAI-preconditioner and the
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Table 1. Number of iterations of the systems in (9) and (10) for the sphere problem.

Number CTF JMCFIE
of ZNF

11 · x = f ′ S · y = g′ ZNF
11 · x = f ′ S · y = g′

Unknowns No PC SAI No PC SAI No PC SAI No PC SAI

1,860 167 9 166 10 38 7 40 10

7,446 195 10 193 10 37 6 40 10

29,742 217 10 213 10 38 6 43 9

65,724 243 10 238 9 39 6 44 9

264,006 294 10 282 9 41 6 45 9

no-preconditioner (No PC) cases for 10−6 residual error. For both formulations, we observe that
SAI is very successful and decreases the iteration counts drastically. Furthermore, contrary to the
the no-preconditioner case, number of iterations does not increase for the SAI preconditioner as
the number of unknowns increase. Hence, the use of SAI in this context significantly increases
the performance of IBP.

3. RESULTS
The numerical experiments are carried out in a server with two Intel Xeon 5355 CPU and 16 GB of
RAM. We use flexible GMRES with no restart as the solver. We note that the solutions of dielectric
problems require many more matrix-vector multiplications with other nonsymmetric solvers, such
as the biconjugate gradient stabilized (BiCGStab) method [9]. Iterations are performed until the
norm of the initial residual is reduced by 10−3. This error level is practical and in accordance
with the error performed in MLFMA. Zero initial guess and right preconditioning are used in all
solutions. RHSs are determined by plane wave excitations.

We demonstrate the performance of IBP on a sphere and a lens [2] with inner dielectric constants
of, 4.0 and 12.0, respectively, as shown in Fig. 3.

Sphere Lens

ε = 12rε = 12rrε = 4rε = 4

Fig. 3. Sphere and lens problems that are used in the experiments.

3.1 Selection of the Inner Stopping Criteria
A critical issue for the performance of IBP is the selection of the stopping tolerances for (9) and
(10). The accuracy of these inner solves should be optimized to minimize the overall solution
time. For this purpose, in Fig. 4, we analyze the convergence behaviour of SAI-preconditioned
solutions for the sphere problem with 264,006 unknowns and for the lens problem with 158,286
unknowns. Note that for both formulations, only two iterations suffice to obtain a 0.1 residual
error. However, for the lens problem, which has a higher dielectric constant than that of sphere,
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the solution of the Schur system (10) requires more iterations to reduce the norm of the residual
to 10−3 . Hence, we set our inner stopping criteria as one order residual drop with a maximum
of three iterations. The results of the experiments show that with such a relaxed stopping criteria
we achieve very strong preconditioners.
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Fig. 4. SAI-preconditioned residual plots of inner solutions for (a) sphere and (b) lens problems.

3.2 Sphere Results
In Table 2, we show the solution frequencies and corresponding number of unknowns for the
sphere problem. We use sphere problem since the accuracy of the solutions can be evaluated
by comparing them with analytical solutions. In Fig.5, we show the iteration counts and in
Fig. 6 we show the solution times for these problems. In [9], a four-partition block-diagonal
preconditioner (4PBDP) has been proposed for the solution of dielectric problems, which use
the self interactions of the lowest-level clusters MLFMA. However, for CTF, this preconditioner
decelerates the convergence and increases the number of iterations, hence we do not include it
in CTF solutions. We summarize our observations about the sphere solutions as follows:

• When a strong preconditioner is not used for CTF, even though we use the robust FGMRES
solver, the iteration counts grow rapidly as the problem sizes get larger. Even though iteration
counts are less for JMCFIE compared to CTF, for problems having larger than 100,000
unknowns iteration counts get larger also for JMCFIE. Hence, JMCFIE solutions can still
benefit from a strong preconditioner. We also note that, without a preconditioner, it becomes
even more difficult to attain convergence of these formulations with other non-optimal but
less memory-hungry solvers, such as BiCGStab.
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• For CTF, convergence is attained at least four times faster with IBP compared to the no-
preconditioning case. For JMCFIE, IBP provides convergence three times faster compared
to the no-preconditioning case, and two times faster compared to 4PBDP.

• For the sphere problem, the solution times of CTF problems become close to those of
JMCFIE. Since CTF requires less memory and produces better accuracy [9], it may be
preferable to JMCFIE for sphere solutions when accelerated by IBP.

Table 2. Information about sphere problems.

Frequency Size MLFMA Number of
Problem (GHz) (λ) Levels Unknowns

S1 0.5 1 3 1,860
S2 1.0 2 4 7,446
S3 2.0 4 6 29,742
S4 3.0 6 6 65,724
S5 6.0 12 7 264,006
S6 7.5 15 7 412,998
S7 8.5 17 8 540,450
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Fig. 5. Number of iterations of the sphere problem for CTF and JMCFIE.
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Fig. 6. Solution times of the sphere problem for CTF and JMCFIE.
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3.3 Lens Results
For radiometric remote sensing applications, delicate simulations of dielectric lenses are required
for a wide spectrum beginning from 30 GHz [2]. In this section, we analyze preconditioned
iterative solutions of this important problem. We solve problems from 30 GHz to 120 GHz as
shown in Table 3. The inner dielectric constant of the hemisphere is 12.0. Note that the solution
of the Schur system becomes more difficult as the inner dielectric constant is increased, as shown
in Fig. 4-(b).

Table 3. Information about lens problems.

Frequency Size MLFMA Number of
Problem (GHz) (λ) Levels Unknowns

L1 30 2.5 6 38,466
L2 60 5.0 7 158,286
L3 90 7.5 7 353,646
L4 120 10.0 8 632,172
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Fig. 7. Number of iterations of the lens problem for CTF and JMCFIE.
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Fig. 8. Solution times of the lens problem for CTF and JMCFIE.

In Figs. 7 and 8, we depict the iteration counts and solution times, respectively. We summarize
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our comments on the solutions of the lens problem as follows:
• We see that particulary for JMCFIE, the iteration counts are larger than the sphere problem

if preconditioner is not used. Hence, preconditioning of CTF and JMCFIE becomes more
critical for real-life problems having high inner dielectric constants.

• CTF solves the problems three times faster with respect to the no-preconditioning case. The
solutions of CTF with IBP are as fast as those of JMCFIE with 4PBDP.

• JMCFIE solution times has been significantly reduced by IBP for the lens problem. We
see that solutions are obtained 5-6 times faster with respect to no preconditioner and 2.5-3
times faster with respect to 4PBDP. JMCFIE with IBP provides fastest solutions for the lens
problem.

4. CONCLUSION
In this work, we propose an efficient block preconditioner generated from the near-field matrix of
MLFMA to accelerate the convergence of the two common dielectric formulations. We show how
to optimize the inner solutions so that maximum efficiency is obtained. Both of the formulations
CTF and JMCFIE highly benefit from IBP. For the sphere problem with an inner dielectric constant
of 4.0, CTF solutions can be obtained as fast as those of JMCFIE when IBP is utilized. For the lens
problem, however, when accelerated by IBP, JMCFIE provides solutions faster than CTF. For both
problems, solution times are significantly reduced by IBP compared to both no-preconditioner
case and previously proposed 4PBDP.
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The analysis of wave scattering by gratings and waveguides with periodic structures is important in electromag-
netic theory and optics. Various analytical and numerical methods have been developed so far and the diffraction 
phenomena have been investigated for many kinds of periodic structures. However, there are only a few treat-
ments of the diffraction by periodic structures using rigorous function-theoretic methods. Das Gupta [1] analyzed 
the plane wave diffraction by a half-plane with sinusoidal corrugation by means of the Wiener-Hopf technique 
together with a perturbation scheme. The analysis by Das Gupta has been generalized thereafter by Chakrabarti 
and Dowerah [2] for the analysis of the H-polarized plane wave diffraction by two parallel sinusoidal half-planes 
using the Wiener-Hopf technique. We have considered a finite sinusoidal grating as another important generali-
zation and analyzed the plane wave diffraction by means of the Wiener-Hopf technique [3]. 

In this paper, we shall reconsider, from a mathematical point of view, the problem solved by Chakrabarti and 
Dowerah [2] for the H-polarized plane wave incidence, and analyze the E-polarized plane wave diffraction by a 
semi-infinite parallel-plate waveguide with sinusoidal corrugation using the Wiener-Hopf technique. The ge-
ometry of the problem is shown in Fig. 1, where  is the incident field of E polarization. The surface of the 
waveguide plates is assumed to be infinitely thin, perfectly conducting, and uniform in the y-direction, being 
defined by  where m and h are positive constants. Assuming that the corrugation 
amplitude 2h is small compared with the wavelength, the original problem can be approximately replaced by the 
problem of diffraction by a semi-infinite parallel-plate waveguide with impedance-type boundary conditions. 
Taking the Fourier transform of the Helmholtz equation and applying approximate boundary conditions in the 
transform domain, the problem is formulated in terms of the simultaneous Wiener-Hopf equations. The Wie-
ner-Hopf equations are then solved via the factorization and decomposition procedure together with the pertur-
bation scheme leading to the efficient zero- and first-order solutions. Numerical examples of the scattered far 
field are presented, and the scattering characteristics of the waveguide are discussed in detail. Main results of this 
paper were already presented elsewhere [

iφ

sin ( 0),x b h mz z= ± + <

4-6]. 
 

0θ

sinx b h mz= − +

sinx b h mz= + ( )i i
yEφ ≡  
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Fig. 1. Geometry of the problem. 
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Realization of Anisotropic Metamaterials  

via Coordinate Transformations 
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Guzelyurt, Mersin 10, TURKEY 
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Abstract − We present novel coordinate transformation techniques, which are utilized by 
anisotropic metamaterials (AMMs), to control the propagation of electromagnetic fields in 
several surprising and useful applications. Material specifications of the AMMs are designed 
by using the form-invariance property of Maxwell’s equations under coordinate 
transformations. We demonstrate the applications of the proposed techniques via several 
finite element simulations.  

 

1. INTRODUCTION 
Metamaterials have recently exhibited tremendous promise in the design of electromagnetic devices 

with new functionalities in various optical and microwave applications, due to their exotic constitutive 
parameters that do not exist in nature. The coordinate transformation technique provides an intuitive way 
of designing anisotropic metamaterials (AMM) to tune the electromagnetic fields in a desired manner. The 
most familiar application that utilizes this technique is the design of a cloaking device for obtaining 
electromagnetic invisibility [1]. Another application is the design of perfectly matched layers (PMLs), 
which are employed as artificial absorbers in mesh truncation of the finite methods [2]. The coordinate 
transformation approach is based on the fact that Maxwell’s equations are form-invariant under coordinate 
transformations. Specifically, coordinate transformations yield spatially-varying anisotropic media, and 
the original forms of Maxwell’s equations are still preserved in the transformed space. 

 
In this study, we present novel coordinate transformation techniques in a wide range of 

electromagnetic applications. First, we will discuss a transformation technique for the purpose of 
“reshaping” objects in electromagnetic scattering. That is, if an object of certain shape is coated by a 
suitably-designed AMM layer, an observer located at an arbitrary point perceives this object as if it has a 
different shape. Second, we will introduce a coordinate transformation technique for “reshaping” 
waveguides. We will show that a waveguide, which is filled with AMM, acts as a different waveguide, 
whose cross-section is ‘reshaped’. Consequently, this technique can enable a waveguide to support 
electromagnetic wave propagation below the cutoff frequency, and thus, can be employed in waveguide 
miniaturization and transitions. Third, we will propose an interesting simulation tool for efficient solution 
of low-frequency scattering problems via AMMs, and show that various low-frequency scattering 
problems involving arbitrarily-shaped ‘small’ objects can efficiently be solved by using only a single 
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mesh and by modifying only the constitutive parameters inside the AMM layer. Finally, we will present a 
technique to compress the excessive white space (i.e. free-space) inside the computational domain of the 
finite methods for solving radiation/scattering problems. This technique can be used as a numerical 
simulation tool to reduce the number of unknowns, especially in high-frequency applications, wherein a 
finite method requires an electrically-large computational domain. We demonstrate the proposed 
techniques via representative examples that are simulated by the Finite Element Method. 

 
2. Form-Invariance of Maxwell’s Equations under Coordinate Transformations 

A general coordinate transformation ( ( )Tr r r→ =
r r r%  and T :Ω→Ω% ) yields a spatially-varying 

anisotropic material, in which the original forms of Maxwell’s equations are still preserved in the 
transformed space. Specifically, Maxwell’s equations are form-invariant under space transformations, and 
a general coordinate transformation leads to the following expressions for the permittivity and 
permeability tensors: 

ε ε= Λ   μ μ= Λ   ( )-1
T(det J ) J JΛ = ⋅      (1) 

where J  is the Jacobian tensor defined in Cartesian coordinates as ( ) ( )J = , , , ,x y z x y z∂ ∂% % % . If the 

original medium is an arbitrary anisotropic medium with parameters (ε ′ , μ′ ), then the parameters 

of the metamaterial in the transformed space are obtained as follows: 

( ) ( ) ( )T
-1 -1 -1J J detε ε ′= ⋅ ⋅ J  ( ) ( ) ( )T

-1 -1 -1J J detμ μ′= ⋅ ⋅ J      (2) 

 
3. Reshaping Objects in Electromagnetic Scattering 

We introduce a coordinate transformation technique to “reshape” perfectly conducting objects in 
electromagnetic scattering [3]. If an object of an arbitrary shape is coated by an AMM layer, which is 
designed by a suitable coordinate transformation, an observer at an arbitrary location views this object as 
if it has a different shape. Thus, this phenomenon can be called ‘reshaping’ or ‘metamorphosis’, only in 
terms of the perceptual abilities of the observer. This technique is basically a generalization of the 
cloaking approach. That is, the cloak transforms an object to a point, and thus, makes this object invisible. 
On the other hand, in the reshaping method, the AMM layer transforms an object to another object with 
reference to an observer. We illustrate the technique in Fig. 1. In order to design the AMM layer, each 

point P inside the AMM layer (ΩM) is mapped to  inside the transformed region . This 

mapping is defined as a coordinate transformation as follows: 

P% MΩ = Ω∪Ω%

( )M n
o

M o

r r
r r r

r r
−

= −
− nr+

r r
r r r% r r

r          (3) 

where ,  and  are the position vectors of PM, Po and Pn. The unit vector  is computed Mr
r

or
r

nr
r â

8-2                                                                                                                                                                   EWS 2008



            

emanating from a point inside the innermost domain, such as the center-of-mass point that can be 
determined as the origin, in the direction of the point P inside the AMM layer. 
 

 
Figure 1. Rehsaping scatterers via coordinate transformation. 

 
4. Reshaping Waveguides 

We introduce a coordinate transformation technique, which transforms the shape of a waveguide to 
another shape [4-5]. In other words, it enables a waveguide, which is filled by a suitably-designed AMM, 
to act as a different waveguide whose cross-section is ‘reshaped’. These two waveguides are equivalent 
and they support the same type of wave propagation, because they have identical cutoff frequencies (i.e., 
eigenvalues) and the fields (i.e., eigenvectors) inside these waveguides are inherently related to each other. 
A special consequence of this approach is that it can be employed in designing miniaturized waveguides, 
because it can render a waveguide to support electromagnetic wave propagation below the cutoff 
frequency. We illustrate the technique in Fig. 2. The AMM layer is designed by transforming each point P 

inside ΩM to  inside the transformed region P% MΩ =Ω∪Ω%  

o

e

|| ||
|| ||

rr
r

= r
r

r r% r          (4) 

 
Figure 2. Rehsaping waveguides via coordinate transformation. 
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5. Solution of Low-Frequency Scattering Problems 
We present a simulation technique to solve efficiently low-frequency electromagnetic scattering 

problems by using coordinate transformations [6]. Accurate numerical solution of the low-frequency 
scattering problems in finite methods is still a challenging task because the mesh usually requires a large 
number of unknowns to define the fine sections of the electrically-small objects with high numerical 
precision (see Fig. 3(a)). In addition, in order to employ the mesh truncation techniques, such as PML or 
absorbing boundary condition (ABC), in scattering problems, the truncation boundary must be located 
sufficiently far away from the object to reduce spurious reflections. Therefore, this results in large number 
of unknowns inside the white-space that is not occupied by the object. However, in the new approach, we 
solve the equivalent problem by designing an AMM layer, which is located at an arbitrary distance from 
the object (see Fig. 3(b)). The equivalent problem contains both near- and far-field of the object. The 
equivalent problem transforms the original problem into a relatively high-frequency problem. An 
interesting feature of the equivalent problem is that the same mesh can be used for any arbitrarily-shaped 
‘small’ object by simply changing the constitutive parameters of the AMM layer with respect to the 
geometry of that object. In this approach, the AMM layer is constructed at an arbitrary but sufficiently 
large distance from the ‘small’ object. Each point P inside the AMM layer (ΩM) is mapped to  inside 

the transformed region  by using the following coordinate transformation: 

P%

MΩ =Ω∪Ω%

( )a c
b c

a b

r r
r r r

r r
−

r= − +
−

r r
r r r r% r r         (5) 

 

 
Figure 3. Low-frequency scattering problem: (a) Original problem, (b) Equivalent problem. 
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6. Spatial Domain Compression in Finite Methods 
We present a new strategy, which compresses excessive white space in the computational domain of 

the finite methods by using AMM layers, and thus, eliminates the unknowns in this white space. In some 
problems involving an electrically-large non-convex object or multiple objects, the computational domain 
requires the employment of excessive white-space because it must be designed as convex over the object(s) 
to take into account the mutual couplings between different parts of the object(s). However, in this new 
technique, we design an AMM layer to reduce the number of unknowns by compressing the excessive 
white space. We define a special coordinate transformation to compress the excessive white space in such 
a way that electromagnetic waves are bended and guided inside the AMM layer, without altering the wave 
behavior in the remaining part of the computational domain. The technique is illustrated in Fig. 4, where 
an L-shaped object is illuminated by a plane-wave. The AMM layer is designed by mapping each point P 

inside the AMM layer to  inside the transformed region P% FS PML M′ ′Ω = Ω ∪Ω ∪Ω%  by using the 

following coordinate transformation: 

( )b
b b

a b

r r
r r r

r r
′ −

r= − +
−

r r
r r r r% r r        (6) 

 
Figure 4. Domain compression: (a) Original problem, (b) Equivalent problem. 

 
7. Finite Element Simulations 

In order to illustrate the applicability of the proposed techniques, we now present the results of finite 
element simulations. In the first example, a square infinitely-long cylindrical scatterer is reshaped as a 
circular scatterer by means of an AMM layer. We plot the contours of the electric field inside the 
computational domain in Fig. 5. In the second example, a square scatterer is made invisible, as shown in 
Fig. 6. 
 
 Next, we reshape a square waveguide as a circular waveguide. We plot the patterns of the 
z-component of the electric (TMz) fields in both original and equivalent waveguides for TM22 mode in Fig. 
7(a). We also tabulate the cutoff wavenumbers for some selected modes in Table I. In addition, we 
consider the parallel-plate waveguide to demonstrate the coordinate transformation technique to 
simultaneously handle waveguide miniaturization and transitions, in Fig. 7(b). 
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 Furthermore, we consider the low-frequency scattering problem where a plane wave, whose angle of 
incidence is 180° with respect to the x-axis, is incident to a circular cylinder whose radius is λ/20. We plot 
the field contours and RCS profiles in Fig. 8. 
 
 Finally, we deal with the domain compression technique. We consider a scattering problem, where a 
plane wave is incident to a ‘thin’ L-shaped cylinder, whose edge-length is 8λ. We plot the field contours 
and RCS profiles in Fig. 9. 
 
8. CONCLUSIONS 
We have presented new metamaterial design techniques by means of coordinate transformations, which 
are specially-tailored to various electromagnetic applications. We have shown that the coordinate 
transformation techniques yield spatially-varying anisotropic materials inside the transformed space, 
wherein the Maxwell’s equations are still satisfied in their original forms. We have numerically explored 
the functionality of all techniques in various configurations with the aid of finite element simulations. 

 
(While this research was conducted, the first author was with the Dept. of Electrical Engineering, 
Middle East Technical University, 06531, Ankara, TURKEY) 
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Table I. Cut-off wavenumbers for square-to-circular waveguide transformation. 

Mode Analytical Original Equivalent

TM11 2.2214 2.2216 2.2225 
TM21, TM12 3.5124 3.5130 3.5162 

TM22 4.4429 4.4443 4.4523 
TE10, TE01 1.5708 1.5708 1.5720 

TE11 2.2214 2.2216 2.2250 
TE22 4.4429 4.4443 4.4571 
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Figure 5. Electric field contours in reshaping a square scatterer as a circular scatterer: (a) Equivalent 
problem, (b) Original problem [Field values in ΩFS are identical]. 

 

 

Figure 6. Electric field contours in making a square scatterer invisible: (a) Equivalent problem, (b) 
Original problem [Field values in ΩFS are identical]. 

 

 
Figure 7. (a) Field patterns in reshaping a square waveguide as a circular waveguide [The black and gray 
patterns represent the fields in the equivalent and original waveguides, respectively], (b) Miniaturization 
in parallel-plate waveguides [Field values in ΩFS are identical]. 
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Figure 8. Finite element simulations for low-frequency scattering: (a) Field contour in original problem, 
(b) Field contour in equivalent problem, (c) Field contour in equivalent problem after transforming the 
field values, (d) Bistatic RCS profiles 
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Figure 9. Finite element simulations for domain compression: (a) Field contour in original problem, (b) 
Field contour in equivalent problem, (c) Bistatic RCS profile. 
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Solution techniques for reconstructing permittivity of a scatterer in a waveguide have been recently given a 
substantial attention. The methods of reconstructing the scatterer’s shape or its permittivity were developed in 
[1] for the cases when the obstacles are perfectly conducting or dielectric bodies in two- or three-dimensional 
space. The paper [2] suggests the technique for cylindrical scatterers whose cross sections are formed by the 
domains with infinite noncompact boundaries. However, when a dielectric body is situated in a waveguide, 
similar results concerning the unique solvability and efficient techniques for reconstructing permittivity or 
shape of the scatterer are not available. Foundations of the appropriate methods that can be used for solving 
direct and inverse boundary value problems for Maxwell's and Helmholtz equations associated with the wave 
propagation in waveguides with dielectric inclusions are elaborated in [3, 4].  In [5] it is shown that 
determination of complex permittivity of a body in a parallel-plane waveguide is unique when the permittivity 
values are reconstructed from the related reflection and transmission coefficients. The purpose of this work is 
to develop the methods set forth in [3-5] for parallel-plane waveguides and in [6-9] for three-dimensional 
waveguides in order to study the inverse problem for a dielectric inclusion in a three-dimensional waveguide. 
The analysis of the direct scattering problem is based on the volume singular integral equation (VSIE) method 
[5-7]. The first problem that may lead to creating an efficient algorithm for reconstructing the permittivity of 
an inclusion is the electromagnetic wave diffraction in a three-dimensional waveguide of rectangular cross 
section containing a dielectric body in the form of a parallelepiped. For a body of coordinate shape it is 
possible to obtain explicit results, including explicit asymptotic representations for the field and formulas for 
transmission and reflection coefficients, using the Green’s functions of rectangular waveguides [3-5] and the 
approach employing VSIE method [7-9 ]. Numerical solution of the problem under study is performed on the 
basis of the VSIE method [7]. 
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Abstract Over the last several years there has been a surge of interest in artificial materials because of
their potential to expand the range of electromagnetic properties in materials. The so called metamate-
rials, also known as left-handed (LHM) or double-negative (DNG) materials with negative permittivity
and permeability have attracted growing interest. An important application area is the realization of
flat superlenses with imaging properties beyond that of conventional lenses. This work investigates the
focusing properties of a lossless planar DNG slab with a relative permittivity and permeability both ap-
proaching the value -1. The relation between the imaging quality and the material parameters is examined
both analytically and numerically. Results obtained from numerical simulations via the transmission line
matrix method are compared to the analytical solution.

1. Introduction

Incident and emerging waves from a DNG slab will undergo negative refraction [1]. As a consequence
a slab with finite thickness d and material parameters εr = µr = -1 (refractive index n =

√
εrµr = -1)

focuses waves emitted from a point source located at a distance l in front of the slab to a point at a
distance of d − l behind the slab [2, 3]. As seen in Fig. 1(a) the waves emitted from a point source
are focused inside and outside the slab due to negative refraction at the slab interfaces. Furthermore
modes with large wavenumbers excite surface waves along the slab interfaces restoring the evanescent
field which decays exponentially away from the source [4]. Therefore a transversely unbounded slab
is capable of focusing every mode of the emitted spectrum from a point source reproducing a perfect
image. On the contrary the focusing quality in a conventional lens is largely determined by its curvature
and aperture size which results in a diffraction limited pattern [5]. The impact of the lateral extension of
a finite sized DNG slab (i.e. having finite aperture) onto its imaging quality has already been investigated
numerically in [6]. As it will be shown in the following sections, the electromagnetic field behavior at
the image plane is largely determined by resonant peaks occuring in the transmission coefficient of the
slab. The effect of the deviation from the ideal material parameters of εr = µr = -1 onto the imaging
quality will be investigated by the method described in [7]. Thereby a slight perturbation σ is applied to
εr and µr whilst retaining the refractive index of n = −1 and considering the problem in the limiting
case as σ → 0. Finally numerical simulations, based on the modified transmission line matrix (TLM)
scheme are carried out and the results are compared to the analytical solution.
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2. Analytical Solution

We consider the setup given in Fig. 1(a). Since the configuration is unbounded in the transversal direction
circular-cylindrical coordinates (ρ, z) will be used. A hertzian dipole

J(ρ, z) = I0δ(ρ)δ(z − z′)ẑ (1)

is placed on the z-axis at z′ = z0 < 0 in front of a DNG slab with refractive index n = −√εrµr and
thickness d. The impedances and spectral wavenumbers along the optical axis (z-axis) are

kairz =
√
k2

0 − k2
t and Z0 =

kairz
ωε0

, (2)

in free space and

kslabz =
√
n2k2

0 − k2
t and Z =

kslabz

ωεr
(3)

inside the slab, where kt =
√

k2
φ + k2

ρ is the transversal wave number parallel to the plane of the slab

interface. The resulting electromagnetic fields behind the slab z > d, for a time dependence of e−iwt,
are given as [8, 9]

E(ρ, z) =
−I0

8πωε0
∇×∇×

∫ ∞
∞eiπ

kt
kairz

H
(1)
0 (ktρ)eik

air
z (z−d+|z0|)T (kt)dkt (4)

H(ρ, z) =
iI0
8π
∇×

∫ ∞
∞eiπ

kt
kairz

H
(1)
0 (ktρ)eik

air
z (z−d+|z0|)T (kt)dkt. (5)

T (kt) being the transmission coefficient of the slab and is defined as

T (kt) =
1

cos(kslabz d)− i
2 sin(kslabz d)( Z

Z0
+ Z0

Z )
. (6)

The integration is over the entire spectrum containing both propagating (kt < k0) and evanescent (kt >
k0) modes. For the perfect imaging condition εr = µr = -1 the integrals in (4) and (5) simplify to∫ ∞

∞eiπ

kt
k̃
H

(1)
0 (ktρ)eik̃(z−2d+|z0|)dkt (7)

where k̃ = kairz = kslabz . The integration is performed in closed form (equation 6.616 - 3 in [10]) and the
result is

E(ρ, z) =
iI0

4πωε(z)
∇×∇× eik0

√
ρ2+(z−2d+|z0|)2√

ρ2 + (z − 2d+ |z0|)2
(8)

and

H(ρ, z) =
I0
4π
∇× eik0

√
ρ2+(z−2d+|z0|)2√

ρ2 + (z − 2d+ |z0|)2
, (9)
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which are identical to that of a dipole situated at z = 2d − |z0|. Therefore it is evident that a perfect
reproduction of the source is obtained. In order to investigate the sensitivity of the imaging quality to the
material parameters they are perturbed from their ideal values of εr = µr = -1 by σ according to

εr = −(1 + σ) and µr = − 1
1 + σ

. (10)

The refractive index remains thereby unchanged and retains its value of n = −1. The impedance is no
more unity and becomes

√
µr
εr

= 1
1+σ . Note that as σ → 0 the impedance of the slab will be unity

and therefore perfectly matched to free space. Substituting these parameters into the integrals (4) and(5)
results in the following expression

−
∫ ∞
∞eiπ

ktH
(1)
0 (ktρ)2(1 + σ)eik̃(z−d+|z0|)

k̃(−2 cos(k̃d)− 2 cos(k̃d)σ + 2i sin(k̃d) + 2i sin(k̃d)σ + i sin(k̃d)σ2)
dkt (11)

with an additional pole at the critical wavenumber

kc = ±k0

√
1 +

[
1
k0d

tanh−1

(
2 + 2σ

2 + 2σ + σ2

)]2

. (12)

The integral can now be evaluated numerically along the contour shown in Fig. 1(b). The wavenumber
kc is associated with the excitation of surface waves and has a strong effect onto the minimum resolvable
feature by the slab. The resolution enhancement is dependent on the value of kc and can be given as
the ratio of kc/k0 [11]. Note that the main contribution to the integral (11) comes from that part of the
spectrum determined by resonant peaks occuring in the transmission coefficient of the slab. As σ → 0
kc →∞ and the ideal case of εr = µr=-1 with a perfect resolution will be achieved.

(a) (b)

Fig. 1: (a) Focusing property of a metamaterial slab of thickness d, with a point source placed at z = z0
(b) Contour of integration. The path is deformed into small semicircles at the poles.

3. Numerical Simulations

The modified transmission line matrix (TLM) scheme yields a general framework for the modeling
of a composite right left handed (CRLH) metamaterial. The simulations have been carried out with
MEFISTo-3D Pro, a full wave time domain electromagnetic simulation tool based on the TLM method.
Negative refractive index materials are modeled by matching an inter cell network to a standard 3D SCN
node. As explained in [12] the discretization of the structure plays thereby an important role and the cell

EWS 2008                                                                                                                                                                 8-15



size ∆l should be much smaller than the operating wavelength (∆l/λ <<1). In this work we consider a
lossless and impedance matched (to free space) CRLH slab with εr = µr = −1 at a design frequency of
f= 5 GHz. A dipole oscilatting at 5 GHz is placed at distance of λ/4 in front of the slab whose thickness
is varied between λ/3 < d < 2λ. The simulation region has dimensions of 10λ x 10λ and is terminated
by a perfectly matched absorbing boundary layer condition (Fig. 2). The spatial step size is λ/60. All
simulations have been truncated at t = 4000∆t, where a steady state has been reached. Field monitors
are placed along the expected image plane at a distance of d − λ/4 behind the slab and the intensity
distribution is calculated by computing the time averaged electric field intensities. The spot sizeR which
gives a measure for the focusing quality is defined as the full width at half maximum (FWHM) value of
the main lobe of the intensity pattern

R =
∆ρ
λ

(13)

with ∆ρ = ρImax − ρImax/2 being the distance over which the intensity falls to half its maximum value
along the image plane. The enhancement in resolution is then given by R−1.

Fig. 2: Simulation space and expected intensity distribution along image plane.

4. Results

For a perfect image the spot size defined in (13) should become infinitesimally small as σ → 0 resulting
in an arbitrarily fine resolution R−1 = ∞. Therefore it is expected that ∆ρ gets smaller as σ → 0.
Fig. 3(a) shows the intensity patterns along the image plane for a slab of thickness d = λ/2 and various
values of σ obtained from the analytical model by integrating (11) numerically. The intensity pattern is
normalized with respect to the the maximum intensity at ρ = 0. As expected the width of the main lobe
narrows as σ → 0 which indicates an enhancement in the resolution. A direct comparison between the
numerical and analytical results reveals that the simulation results correspond to the analytical model with
a perturbation factor of σ = 0.1 and a resolution enhancement of R−1 = 4. The DNG medium model
is implemented in MEFISTo-3D Pro by a matching network. As explained in [12] the discretization
of the structure plays thereby an important role and the cell size ∆l should be much smaller than the
operating wavelength (∆l/λ <<1). Throughout the simulations a discretization of 1 mm was used which
corresponds to λ/60. Therefore it is expected that the simulated resolution will enhance by discretizing
the structure with a finer mesh. The resolution enhancement R−1 obtained from the analytical model
as a function of σ is plotted in Fig. 3(c). As σ → 0 the resolution increases in accordance with the
wavenumber given in (12), which varies for small values of σ as lnσ. On the other hand for larger
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perturbation values it can be seen that the resolution degrades significantly. Furthermore the impact of
the slab thickness on the focusing quality has been investigated. The thickness of the slab is varied
between λ/3 and 2λ, while the point source is held fixed at a distance of λ/4 from the slab. The results
are plotted in Fig. 3(b). It is observed that the focusing quality degrades with incresing slab thickness.
From Fig. 3(d) it can be seen that the improvement in the resolution is very significant for thin slabs . A
further increase of the slab thickness, beyond a thickness to wavelength ratio of approximately d/λ = 1
results only in a small enhancement of the resolution.

(a) (b)

(c) (d)

Fig. 3: (a) Comparison of intensity distribution along image plane obtained from the analytical model (by
integrating (11)) for various perturbation values and MEFISTo simulation results (d = λ/2, z0 = −λ/4,
f= 5 GHz) (b) MEFISTo simulation results. Intensity distribution along image plane for varying slab
thicknesses (λ/3 < d < λ). The source is held fixed at z0 = −λ/4 and the position of the image plane
adjusted according to the slab thickness (c) Resolution enhancement as a function of log σ obtained by
integrating (11) (d) Effect of slab thickness on resolution.

5. Conclusion

The focusing property of a 2D metamaterial slab was studied both analytically and numerically. The
analysis was carried out through a perturbation of the material parameters from their ideal values of
εr = µr = −1, for which kc → ±∞. Thereby it was shown that the resolution enhancement depends
primarily on the extent by which the surface waves are excited. The main contribution to the integral
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in (11) comes from the part of the evanescent spectrum close to the wavenumber by which surface
waves are excited at the interfaces of the slab. Small deviations from the ideal material parameters result
in a significant loss of the focusing quality. The accuracy of the numerical calculations are strongly
dependent on the discretization and are valid for electrically short transmission lines with ∆l/λ << 1.
Therefore it is difficult to simulate a perfect image in which case a very fine meshing is required. However
subwavelength imaging with a resolution enhancement of R−1 = 4 was achieved. To sum up the perfect
imaging phenomena is very sensitive to the material parameters and even a small deviation from them
will result in a significant degradation of the imaging quality.
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Non-uniform Currents of the Physical Theory of Diffraction in 

Terms of the Modified Theory of Physical Optics  

 

Y. Z. Umul 
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Abstract − The fringe currents of the physical theory of diffraction are evaluated in the 

context of the modified theory of physical optics. Since the modified theory of physical 

optics leads to the exact field expressions for the perfectly conducting half-plane and wedge, 

the currents are expressed in terms of a line integral which contains all of the terms with 

respect to the powers of the wave-number. The fields are evaluated for the Dirichlet 

boundary conditions. The radiated fringe waves are plotted numerically.  

 

1. INTRODUCTION 

The physical theory of diffraction (PTD), which was invented by Ufimtsev, is a high frequency asymptotic 

technique that proposes to correct the surface currents of the physical optics (PO) [1]. PO is a high 

frequency integrative method, which is generally used to evaluate the scattered fields by defining a 

tangential surface current on the illuminated side of the scatterer [2]. Although PO leads to the correct 

geometrical optics (GO) waves asymptotically, the edge diffracted fields that are found from the edge 

point contributions of the scattering integrals are wrong. Since PO proposes an infinite tangential plane at 

the point of scattering, a sudden discontinuity on the surface leads to incorrect field expressions [3]. 

Ufimtsev named the surface currents of PO as uniform currents and suggested to add a second current 

component which is called as the fringe or non-uniform currents. Since the exact solution of the PEC 

wedge problem is known in literature, Ufimtsev obtained the fringe currents by subtracting the high 

frequency asymptotic expression of PO diffracted waves from the rigorous solution [4]. PTD is a widely 

used method in the literature for the evaluation of high frequency scattered fields [5-8]. 

In this paper, we aim to obtain the fringe currents by using the modified theory of physical optics 

(MTPO) for a PEC half-plane. Since MTPO gives the exact scattered waves for the PEC half-plane and 

wedge geometries [9, 10], there is no need to consider the asymptotic expressions of the diffracted fields. 

If the surface integral of PO is directly subtracted from the MTPO integrals, the resultant expression will 

lead to the fringe waves, which are radiated by the non-uniform currents of PTD. The Dirichlet boundary 

conditions (soft surface) will be taken into account on the surface. The resultant fringe waves will be 

plotted numerically and compared asymptotic approach of Ufimtsev. 

A time factor of exp(jwt) is considered and suppressed throughout the paper. w is the angular 

frequency.           

 

2. FRINGE WAVES 

A PEC half-plane, which is illuminated by the plane wave of ( )[ ]αα sincosexp0 yxjku + , is taken into 
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account. k is the wave-number. The half-plane is at ( ) ( ) ( ){ }∞∞−∈=∞∈= ,,0,,0;,, zyxzyxS . u0 is 

the constant amplitude of the electric field. 

x

y

αβ
φ

ρ R

P

Incident

ray
Scattered

ray

QHalf-plane
 

Fig. 1. Geometry of the half-plane  

The geometry of the problem is given in Fig. 1. P and Q are the observation and scattering points, 

respectively. A soft surface is defined by the Dirichlet boundary conditions and requires that the total field 

is equal to zero on the surface of the scatterer. The MTPO integral for the total scattered field can be 

written as 

                  ( ) ( ) ( )∫
∞ −








 +
−

−
+=

0

4

'
2

sin
2

sin
2

dx
kR

e
Qu

ke
PuPu

jkR

i

j

is

αβαβ

π

π

             (1) 

for R is equal to ( ) φρρ cos'2'
22 xx −+  [11]. ui is the incident plane wave. The PO integral reads 

                       ( ) ( ) ( )∫
∞ −

−=
0

4

'sin
2

dx
kR

e
Qu

ke
PuPu

jkR

i

j

iPO α
π

π

                     (2) 

for this case. uPO can be found by taking β=α in Eq. (1). The fringe waves can be evaluated directly by the 

equation of 

                                ( ) ( ) ( )PuPuPu POsf −=                               (3) 

which yields 

                          ( ) ( ) ( )∫
∞ −

=
0

4

',
2

dx
kR

e
qQu

ke
Pu

jkR

i

j

f αβ
π

π

                        (4) 

where q(β,α) is equal to 

                          ( ) α
αβαβ

αβ sin
2

sin
2

sin, +
+

−
−

=q                        (5)  

Equation (4) represents the fringe field, which is radiated by the non-uniform current component, for a 

soft surface. As a second step, we will represent the integral, in Eq. (4), in terms of the Fresnel function, 
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which can be defined as 

                                   [ ] ∫
∞

−=
x

jt

j

dte
e

xF
2

4

π

π

.                              (6) 

The phase function of the integral is equal to Rx −αcos' . The first derivative of the phase function 

gives two stationary points at β=α and β=-α. The first stationary point represents the reflected GO rays 

whereas the second one leads to the incident GO field [12, 13]. The formula, derived in Ref. [14], will be 

used for the evaluation of Eq. (4). The term of q(β,α) can be rewritten as 

               ( ) ( )
( )

( )
( ) 2

sin1
2/cos

2/cos

2
sin

2/cos

2/cos
1,

αβ

β

ααβ

β

α
αβ

+








−+

−








−=q .             (7) 

The GO fields, at                 

For equations, β=α and β=-α, become zero in Eq. (7). The uniform fringe field is found to be 

                                  ( ) rif IIPu +=                                 (8) 

for Ii and Ir are equal to 

                        
( )
( )

( ) ( ) [ ]ii

jk

i FsigneI ξξ
φ

α αφρ −









−= cos

2/sin

2/cos
1                      (9) 

and 

                       
( )
( )

( ) ( ) [ ]rr

jk

r FsigneI ξξ
φ

α αφρ +









−−= cos

2/sin

2/cos
1                    (10) 

respectively. sign(x) is the signum function, which is equal to 1 for x>0 and -1 otherwise. ξi and ξr can be 

defined as 

                                
2

cos2
αφ

ρξ
−

−= ki                               (11)  

and 

                                
2

cos2
αφ

ρξ
+

−= kr .                              (12) 

Equation (8) is the exact representation of the fringe fields for a soft half-plane. The approximate 

expression of the fringe fields that were introduced by Ufimtsev [4] can be obtained by using the relation 

of 

                           ( ) [ ]
( )

∑
∞

=









+−

−





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
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+Γ

=
0

2

4 2

1

2

2

i
i

xj

jx

i

x

e
xFxsign

π

π

                       (13) 

 for |x|→∞. Ii and Ir can be written approximately as 
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and 
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respectively.  

 

Fig. 2. Comparison of the exact and asymptotic fringe waves for φ0=30
0
  

 

Fig. 3. Logarithmic error for φ0=30
0
  

The exact and asymptotic expressions of the fringe waves will be compared numerically. The 

distance of observation is taken as λ6 . Figure 2 shows the variation of the fringe field versus the 

observation angle in polar coordinates. The angle of incidence is equal to 30
0
. The asymptotic field is not 
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harmonious with the exact waves. Especially the error intensifies at the reflection and shadow boundaries. 

The error function is defined by the equation of 

                                
asymp

exact
e

u

u
f log= .                                (16) 

The variation of the error function is given in Fig. 3.  

3. CONCLUSIONS 

In this paper, we analyzed the error of the asymptotic fringe waves, used in the definition and application 

of PTD. The method of MTPO enabled us to express the exact solution of the half-plane problem in terms 

of a PO integral. The integral representations of the exact and classical PO fields are transformed into 

Fresnel functions. A more correct expression is obtained for the fringe waves. The results are compared 

with the asymptotic expressions, used in the literature. The error of the actual asymptotic representation is 

put forward.     
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Abstract - In this work we investigate the two-dimensional (2-D) inverse synthetic aperture 
radar (ISAR) imaging of large and complex targets with the help of a hybrid and approximate 
technique for far field electromagnetic wave scattering at high-frequencies. The body of the 
target is modeled using facets and wedges. The well-known shooting-bouncing ray (SBR) 
SBR method [1,2] combined with Physical Theory of Diffraction (PTD) technique [3] is 
employed to estimate the far field scattered field of the facets and wedges on the object, 
respectively. First, the accuracy of the method in this work is tested and validated with 
analytical results that are known for some canonical structures such as sphere, plate and 
dihedral reflectors. Then, 2-D ISAR [4] images of different large and complex platforms are 
generated by using the computed electric field data over frequencies and far field look angles. 
Despite conventional approaches that usually take into account only the SBR method to 
generate the ISAR image; in this paper, wedge diffraction concept in addition to SBR 
methodology is taken into account to demonstrate the effect of the diffraction energy to the 
final ISAR image. Therefore; visual demonstrations that show the contribution of diffracted 
fields to the final ISAR image are provided for various test targets.  

 

1. INTRODUCTION 
In radar signature applications, ISAR images of a target are useful and well-known method for target 

identification and classification purposes. The complex ISAR image represents the reflectivity function of 
the target and it can be used for various goals such as the determination of scattering centers on the target. 
Such information can be very useful in understanding the major scattering points (or hot spots) that are 
responsible for the most of the scattered energy.  The complex ISAR image of a target is typically formed 
either by Fourier transforming the  scattered field data over a finite range of look angles and frequencies 
or by using the range-Doppler methodology [5].  

In this work we strive to develop an analysis model for visualizing the 2-D ISAR images of complex 
targets. This model is based on the SBR method and the PTD technique. The SBR is known to be a 
powerful high frequency electromagnetic (EM) simulation method for the estimation of EM scattering 
from large, complex bodies.  In SBR, the multiple-scattered field terms can also be calculated as well as 
the single-bounce term. At high frequencies, the diffracted field computation is generally done with the 
PTD technique which has been well developed in the past few decades and has been implemented in 
CAD-based radar cross section (RCS) computation environment in the military and civilian industries [6-
7]. 
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2. ANALYSIS 
In SBR technique [1], rays are shot from the transmitter towards the target and are traced according to 

the laws of geometrical optics. To find the contribution of each ray to the total scattered field, we calculate 
the far field contribution of the first and the last hit points for each ray before leaving the target. Only the 
physical optics (PO) contribution is calculated from the first hit point of each ray. On the other hand, a 
ray-tube integration is performed for the last hit point. 

In this work all targets are assumed to be perfect conductors. Under this construct, Physical Optics 
contribution to the scattered field can be written as: 

 

( ) ( )( )0 0
ˆ0 ˆ ˆ, ,

4
sk r

s sE k k J rjk r jks
po

S

jk Zr e e ds
r

θ φ
π

′− ⋅′ ′= × ×∫∫   (1a) 

 
where ( )J r′  is the current density calculated as follows: 
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0 shadowed

in H
J

×
≈ 


     (1b) 

 
In the above equation, n̂  is the surface normal of the illuminated part of the target. In the equation (1a), 

0k is the wave number of the free space, ˆ sk  is the unit vector directed from origin to observation point 
and Z is the characteristic impedance of the surrounding medium. Now the integral in equation (1a) can be 
calculated analytically as given in [8].  

The contribution of the ray-tube integration at last hit point of ith ray to the scattered field is calculated 
as follows:  
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θ θ

φ φ
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Finally the total scattered field due to ray-tube integration can be obtained by the summation of 
contributions of the each rays to the scattered field.  
 

ray

( ) ( )E r E r
th

s s
sbr i

i

= ∑       (2c) 

 
In equation (2b) Airr  is the vector from the origin to the last hit point of the ith ray, ( )exitiA∆  is the cross 

section of the ith exit ray-tube and the expressions iBθ , iBφ  and ( , )iS θ φ  are defined in [2]. As a result, 

PO and ray-tube integration contributions to the scattered field are summed:   
 

E E Es s s
po sbr= +       (3) 
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It has to be noted that RCS results using SBR method and determined from the measurement are not 

identical and give some differences. The reason for a possibly considerable difference is the neglect of the 
edge diffraction in SBR solution. For a more reliable result, edge effects should be included as well. The 
PTD method used in this paper to calculate a diffraction contribution for each ray hits the platform’s 
surface vicinity of an edge. Because of the studied platforms are CAD models, whose surfaces are made 
up of triangular facets, wedges formed by these triangles are specified an angle between the normal 
vectors of adjacent triangles. All wedges can be obtained by simply relating each triangle to its neighbors. 
The diffracted field strength can be calculated from the electric edge currents I and the magnetic edge 
currents M as following [3],  

 

( )
4

jks

d C
eˆ ˆˆ ˆ ˆE ( r ) jk ZI ( r )s s t M( r )s t dl

sπ

−
 ′ ′= × × + × ∫

r r rr r r
    (2) 

 
where s is the distance between the integration point and the observation point, r′r  is the position of the 
current on the edge, t̂  is a unit vector along the edge, ŝ  is the unit vector from r′r  to the point of 
observation rr . Then, the final equation for the diffracted field is obtained as 
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where iE

r
 is the incident electric field strength and the parameters ê , β , β′  and  D  are defined in [9]. 

Finally, we can get the 2-D ISAR image by using the following formulation defined in [4]: 
 

( ) ( )22( , ) ( , ) cj k ys j k x
cISAR x y E k e e d k d kφφ φ

∞ ∞ ⋅⋅
−∞ −∞

= ⋅ ⋅ ⋅ ⋅∫ ∫    (4) 

 
Some various examples are presented in the following section to show the visual demonstration for ISAR 
image with SBR formulation and the diffracted field contribution to the final ISAR image. 

3. RESULTS 
For verification of the PO algorithm combined with PTD technique, scattering from a cone is studied 

and compared with the exact solution obtained by method of moments (MoM) solution. Fig.1 shows the 
monostatic RCS for the vertical polarization case. As obvious form the figure, PO with PTD result gives 
good agreement with the MoM solution for the considered polarization 
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Figure  1: Monostatic RCS of a perfectly conducting cone with 15 , 3Dα λ= =o  (VV polarization case). 

 
The second simulation shows verification of the both PO and SBR algorithms. Scattering from a trihedral 
(Fig.2a) is studied and compared with the solution obtained by FDTD [11]. Fig.2b shows the monostatic 
RCS for an incident angle θ =66o as the angle φ varies from 0o to 90o. The size of trihedral plate was taken 
to be 5λ. Comparison of the PO with SBR result to the FDTD result provides a fairly good agreement as 
well. 
 
 

 
Figure  2a: Geometry of the square 

trihedral corner reflector. 

 
Figure  2b: Monostatic RCS of the trihedral corner 
reflector with 5λ x 5λ square plates: 66= o

iθ  for the 
VV polarized incident wave.

 

9-10                                                                                                                                                                  EWS 2008



 
 
For the validation of our PO, SBR and PTD based codes; only small canonical objects were 
studied as presented in Fig.1 and Fig.2. Next, we will investigate a much more complex and large 
target that is look like an airplane as its CAD model is shown in Fig.3. The size of this airplane 
model is 10λ x 8λ x3λ. It contains some open and close structures to cause multiple scattering. 
After the EM simulation of this target, SAR image of the target is obtained as demonstrated in 
Fig. 4 by only considering the PO contribution. During the EM simulation of this target, the 
center frequency of operation is selected as 18 GHz and the azimuth ( 0φ = o ) and the elevation 
( 90θ = o ) angles correspond to nose-on incidence. Next two figures (Fig. 5 and Fig. 6) show 
ISAR images of the test target for both VV and HH polarizations by using PO with PTD results. 
As obvious from the ISAR image for VV polarization, wing of the plane becomes clearer after 
including the PTD contribution. 

 
Figure  3: Geometry of the generic plane model. 
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Figure  5: ISAR image of the plane model. 
PO+PTD contributions are considered. VV 

polarization. 
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Figure  4: ISAR image of the plane model. Only PO 

contribution is considered. 
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Figure  6: ISAR image of the plane model. PO+PTD 

contributions are considered. HH polarization. 
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Figure  7: ISAR image of the plane model. 
PO+SBR contributions are considered. VV 

polarization. 
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Figure  9: ISAR image of the plane model. Only 

PTD contribution is considered. VV 
polarization. 
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Figure  8: ISAR image of the plane model. PO+SBR 

contributions are considered. HH polarization. 
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Figure  10: ISAR image of the plane model. Only   
PTD contribution is considered. HH polarization. 
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Figure  11: ISAR image of the plane model. 

PO+SBR+PTD contributions are considered. 
VV polarization. 
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Figure  12: ISAR image of the plane model. 

PO+SBR+PTD contributions are considered. HH 
polarization. 

 

4. CONCLUSIONS 
 

In this work, the PO, SBR and PTD solutions of a large, complex target is studied and 
corresponding ISAR images are presented. First, the validity of the computer codes for each method is 
checked with different canonical targets of known shape. After getting a very good match with the 
theoretical/analytical scattered field with the calculated ones, a much more complex and large platform 
is selected for the complete ISAR analysis of the methods. Since we can compute the distribution from 
all three methods, we can also image the scattering and/or diffraction field calculated via these methods. 
The use of ISAR images for this work helps us to understand the locations of the hot spots caused by 
scattering or diffraction.    
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Gebze Institute of Technology, Istanbul Cad. 101, Gebze, Kocaeli, TURKEY 
 
 

It has been recently shown that the classical physical optics (PO) integral can be 
interpreted as a Radon transform and can be easily evaluated using geometric 
means. Specifically, it was shown that if the scatterer consists of triangular 
patches, analytical expression for the PO integral for each patch exists (D. 
Bölükbaş and A.A. Ergin, Microwave and Optical Technology Letters, 44(3), 
284-288, 2005). It was further shown that if the scatterer is modeled with NURBS 
surfaces, the PO surface integral reduces to a line integral that can be easily 
evaluated using geometric-numeric techniques (H.A. Serim and A.A. Ergin, IEEE 
Antennas and Wireless Propagation Lettters, accepted for publication). 
 
In these published work, the incident field is assumed to be a plane-wave and the 
observer is assumed to be at the far-field region of the scatterer. Under these 
circumstances, it was shown that the time dependent PO integral reduces to a line 
integral over the curve defined by the intersection of a plane (an implicit surface) 
with the scatterer. The position of the plane is time-dependent. In this work, we 
show that the time-domain approach to evaluation of the PO integral can be 
extended to scenarios in which either the source or the observer or both are in the 
near-field of the scatterer. More specifically, it will be shown that when either the 
source or the observer is in the near-field, the implicit surface turns out to be a 
paraboloid and when both the source and observer are in the near-field it turns out 
to be an ellipsoid. The size of the implicit surface still changes with time in a 
trivial manner. The PO integral is still a line integral over the intersection of the 
implicit surface with the scatterer. 
                             
The full derivation for all the cases will be shown and the assumptions and 
limitations of the results will be discussed during the presentation. Applications 
pertaining to scatterers modeled with triangular patches and NURBS surfaces will 
be shown. 
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SLOT- LOADED MICROSTRIP ANTENNA DESIGN OF BROADBAND 

TRANSCEIVER FOR WIRELESS DATA COMUNICATION IN ISM 

BAND 

Beyza Ardic, Adnan KAYA, Özlem Coşkun, Ahmet Irkın 

Abstract 

This paper presents presentation of the designed procedure of the microstrip 

antenna operating at 2.4 GHz transceiver for RF front-end for ISM-band digital 

wireless communication. The aim of this project is to present several types of 

compact microstrip patch antennas for ISM 2.4 GHz band, and then to compare and 

interpret the results. Besides, some information was provided as to the ISM band and 

transceiver systems.  

 The different geometries of microstrip antennas are simulated such as 

recessed microstrip line feed, microstrip patch arrays, slot-loaded microstrip patch 

arrays, dual-band and slot-loaded rectangular microstrip patch with AWR Microwave 

Office software, using Moment Method. A slot-loaded rectangular microstrip antenna 

with meandering slots in the ground plane was designed; then this antenna was 

simulated and studied in detail. Furthermore, the effect of the results is studied by 

changing the parameters of the meandered antenna. The results also show that the 

return loss levels of the meandered antennas vary from    -12.8dB   to -18.9 dB. The 

designed antenna operates at 2.4 GHz with 105 MHz bandwidth, having 11S  of -12.8 

dB at resonant frequency. 

Key words: Microstrip antenna, ISM Band, transceiver, Sloat-Loaded 
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Hierarchical Parallelization of MLFMA for the Efficient Solution
of Large-Scale Electromagnetics Problems

Özgür Ergül1,2 and Levent Gürel1,2

1Department of Electrical and Electronics Engineering
2Computational Electromagnetics Research Center (BiLCEM)

Bilkent University, TR-06800, Bilkent, Ankara, Turkey
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Abstract — We present the details of a hierarchical partitioning strategy for the efficient
parallelization of the multilevel fast multipole algorithm (MLFMA) on distributed-
memory architectures. Unlike previous parallelization approaches, this strategy is based
on the simultaneous distribution of clusters and their fields by considering the optimal
partitioning of each level separately. Using the hierarchical strategy, load-balancing is
improved, computations on the tree structure are distributed evenly among processors,
and the number of communication events between processors is reduced. We demonstrate
the effectiveness of the resulting parallel implementation by solving very large scattering
problems involving both canonical and complicated targets discretized with more than
100 million unknowns.

1. INTRODUCTION

The multilevel fast multipole algorithm (MLFMA) [1],[2] is a powerful method for the fast and efficient
solution of scattering and radiation problems in electromagnetics. Formulations of problems involving
three-dimensional metallic objects can be achieved rigorously via surface integral equations [3].
Accurate solutions of integral-equation formulations require discretizations of surfaces with small
elements, e.g., triangles, with respect to wavelength. Application of the method of moments (MOM) [4]
leads to N × N dense matrix equations, which can be solved iteratively by using a Krylov-subspace
algorithm. MLFMA can perform the required matrix-vector multiplications in O(N log N) time by
using O(N log N) memory, hence it enables the solution of large matrix equations arising from the
discretization of large-scale objects. However, many real-life problems require discretizations with
tens of millions of unknowns, which may not be handled easily with the sequential implementations
of MLFMA running on a single processor. In order to achieve the solution of such large problems,
MLFMA can be parallelized and employed on a cluster of computers.

MLFMA is usually parallelized on relatively inexpensive computing platforms with distributed-memory
architectures [5]–[13]. Unfortunately, parallelization of this algorithm is not trivial, and it can be
difficult to obtain a sufficient parallelization efficiency, especially when the number of processors
is large and problems involve complex objects. This is mainly due to the complicated structure of
MLFMA, which involves a multilevel tree including clusters of discretization elements and samples
of radiating/incoming fields. Simple parallelization strategies, which are based on distributing clusters
among processors, usually fail to provide efficient solutions. Problems arise mainly for the higher
levels of MLFMA, which involve small numbers of clusters with densely-sampled fields. Hybrid
strategies are developed to improve the parallelization of MLFMA by applying different partitioning
techniques for the lower and the higher levels of tree structures [6]–[11]. By distributing samples of
fields instead of clusters in the higher levels, load-balancing is enhanced significantly, which leads
to higher parallelization efficiency. On the other hand, the improved efficiency offered by the hybrid

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Research Grants
105E172 and 107E136, by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program
(LG/TUBA-GEBIP/2002-1-12), and by contracts from ASELSAN and SSM.
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parallelization strategies may not be sufficient, especially when the number of processors is large.

In this paper, we present the details of a hierarchical parallelization strategy [12],[13], which provides
significantly higher efficiency than the previous parallelization approaches, especially as the number
of processors increases. This strategy is based on the simultaneous distribution of clusters and their
fields by considering the optimal partitioning of each level separately, and it is well suited for the
multilevel structure of MLFMA. Using the hierarchical strategy, computations on the tree structure are
distributed among processors with improved load-balancing, and the number of communication events
between processors is reduced. We demonstrate the effectiveness of our algorithm by solving very
large scattering problems involving both canonical and complicated targets discretized with 120–135
million unknowns.

2. MLFMA SOLUTIONS OF SURFACE INTEGRAL EQUATIONS

We use surface integral equations to formulate time-harmonic electromagnetics problems involving
three-dimensional perfectly-conducting objects with arbitrary shapes. Consider a metallic object with
an electrical dimension of kD, where k = ω

√
εμ = 2π/λ is the wavenumber. For numerical solutions,

the surface of the object is discretized by using λ/10 planar triangles, and the electric current induced
on the surface is expanded in a series of basis functions, i.e.,

J(r) =
N∑

n=1

anbn(r), (1)

where N = O(k2D2). In (1), bn(r) for n = 1, 2, ..., N represents the nth basis function with an
unknown coefficient an. Applying the method of moments and testing the boundary conditions on the
surface of the object lead to N × N dense matrix equations in the form of

Z̄ · a = v, (2)

where matrix elements Z̄[m,n] for m,n = 1, 2, ..., N represent electromagnetic interactions of
discretization elements, i.e., basis and testing functions, while v represents the excitation vector
obtained by testing incident fields created by external sources. Applying a Galerkin scheme, we
use the same set of Rao-Wilton-Glisson (RWG) [14] functions as basis and testing functions.

Matrix equations in the form of (2) can be solved iteratively via a Krylov subspace algorithm, where the
required matrix-vector multiplications are performed efficiently by MLFMA [1],[2]. A tree structure
with L = O(log N) levels is constructed by placing the object in a cubic box and recursively dividing
the computational domain into subdomains, until the box size is about 0.15λ–0.3λ. The number of
nonempty boxes, i.e., clusters, can be approximated as

Nl ≈ 4(1−l)N1 (3)

for levels l = 1, 2, ..., L, where N1 = O(N) is the number of clusters in the lowest level (l = 1).
Applying a one-box-buffer scheme, interactions between the basis and testing functions that are located
in the same cluster or in two touching clusters in the lowest level are calculated directly and stored
in the memory. During iterative solutions, these near-field interactions are used to perform the partial
matrix-vector multiplications

yNF = Z̄NF · x, (4)

where x is a vector of coefficients provided the iterative algorithm. There are O(N) near-field
interactions and the sparsity of Z̄NF is O(1/N). Using MLFMA, matrix-vector multiplications
involving the far-field interactions, i.e.,

yFF = Z̄FF · x = (Z̄ − Z̄NF ) · x, (5)

are performed approximately and efficiently by using the diagonalization and factorization of the
homogenous-space Green’s function [15]. In each matrix-vector multiplication, three main stages,
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called aggregation, translation, and disaggregation, are performed on the multilevel tree structure.

The aggregation stage involves the calculation of radiated fields of clusters from the lowest level
(l = 1) to the top of tree structure (l = L). Radiated fields are sampled on the unit sphere at

Sl = Sθ
l × Sφ

l = (Tl + 1) × 2(Tl + 1) (6)

points, where

Tl ≈ 1.73kal + 2.16(d0)2/3(kal)1/3 (7)

is the truncation number determined by the excess bandwidth formula [16]. In (7), al is the box size at
level l, and d0 is the desired digits of accuracy. We choose samples regularly spaced in the φ direction
and use the Gauss-Legendre quadrature in the θ direction [15]. The truncation number depends on
the electrical size of the clusters, i.e., Tl = O(kal), and the number of samples can be approximated
as

Sl = Sθ
l × Sφ

l ≈ 2(l−1)Sθ
1 × 2(l−1)Sφ

1 = 4(l−1)S1, (8)

where S1 = O(1).

In the lowest level, the radiated field of a cluster C at a reference point (center of the cluster)
rC can be obtained by combining the radiation patterns of the basis functions inside the cluster, i.e.,[

F θ
C

]
S1×1

=
∑
n∈C

xn

[
fθ

n

]
S1×1

(9)

[
F φ

C

]
S1×1

=
∑
n∈C

xn

[
fφ

n

]
S1×1

, (10)

where fθ
n and fφ

n represent arrays of S1 elements containing the θ and φ components of the radiation
pattern of the nth basis function. Similarly, F θ

C and F φ
C are arrays of S1 elements containing θ and φ

components of the radiated field of the cluster C . Radiation patterns of basis functions are calculated
during the setup of the program and stored in memory to be used multiple times during the iterative
solution.

The radiated field of a cluster C in a level l > 1 can be obtained by shifting and combining the
radiated fields of its sub-clusters sub{C}, i.e.,[

F θ,φ
C

]
Sl×1

=
∑

C′∈sub{C}

[
ῩC←C′

]
Sl×Sl

·
[
Γ̄l←(l−1)

]
Sl×Sl−1

·
[
F θ,φ

C′

]
Sl−1×1

, (11)

where Γ̄l←(l−1) is a Sl × Sl−1 sparse interpolation matrix. We use local Lagrange interpolation to
match different sampling rates of consecutive levels [17]. Memory required for interpolations can be
reduced significantly by using independent samplings in the θ and φ directions, and decomposing
interpolation matrices as outer products of vectors. In (11), ῩC←C′ is a diagonal matrix involving
exponential functions to shift the radiated field of cluster C ′ to the center of C .

In the translation stage, radiated fields computed during the aggregation stage are translated into
incoming fields. For each cluster at any level, there are O(1) clusters to translate the radiated field
to. The incoming field to the center of a cluster C due to translations is calculated as[

Ḡ
θ,φ
C

]
Sl×1

=
∑

C′∈far{C}

[
W̄

]
Sl×Sl

·
[
Π̄C←C′

]
Sl×Sl

·
[
F θ,φ

C′

]
Sl×1

, (12)

where far{C} represents clusters that are far from C , W̄ is a diagonal matrix containing weights of
the angular integrations performed at the end of the disaggregation stage, and ΠC←C′ is a diagonal
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translation operator. Using cubic (identical) clusters, the number of different translation operators is
O(1), independent of the level, due to the symmetry [2]. We also use optimized interpolation methods
to calculate translation operators in O(N) time during the setup stage, i.e., before iterations [18].

Finally, in the disaggregation stage, total incoming fields at cluster centers are calculated from the
top of the tree structure to the lowest level. The total incoming field to the center of a cluster C in
level l < L is obtained by combining incoming fields due to translations and the total incoming field
to the center of its parent cluster P{C}, i.e.,[

Hθ,φ
C

]
Sl×1

=
[
Ḡ

θ,φ
C

]
Sl×1

+
[
Γ̄T

l←(l+1)

]
Sl×Sl+1

·
[
ῩC←P{C}

]
Sl+1×Sl+1

·
[
Hθ,φ

P{C}

]
Sl+1×1

, (13)

where Γ̄T
l←(l+1) is a Sl ×Sl+1 sparse anterpolation (transpose interpolation) matrix [19]. In the lowest

level, total incoming fields are received by testing functions, i.e.,{
Z̄

FF · x
}

[m] =
[
gθ

m

]
1×S1

·
[
Hθ

C

]
S1×1

+
[
gφ

m

]
1×S1

·
[
Hφ

C

]
S1×1

, (14)

where gθ
m and gφ

m represent arrays of S1 elements containing the θ and φ components of the receiving
pattern of the mth basis function inside a cluster C . Similar to radiation patterns of basis functions,
receiving patterns are also calculated during the setup of MLFMA.

3. HIERARCHICAL PARALLELIZATION OF MLFMA

In MLFMA, processing time and memory required for all operations at level l are proportional to the
product of the number of clusters and the number of samples, i.e.,

NlSl ≈ 4(1−l)N14(l−1)S1 = N1S1 = O(N). (15)

Then, all levels of MLFMA have equal importance with O(N) complexity in terms of processing
time and memory. Consequently, an efficient parallelization of MLFMA should attempt to obtain the
best partitioning for each level. Simple partitioning strategies based on distributing clusters among
processors usually fail to provide efficient solutions, since higher levels of MLFMA involve few
clusters with large numbers of field samples. Hybrid partitioning strategies, which apply different
partitioning strategies for the lower and higher levels, are developed to improve the efficiency of
the parallelization of MLFMA [6]–[11]. In those implementations, each cluster at the higher levels
is shared by all processors, while each processor is assigned to the same portion of fields for all
clusters. Even though hybrid partitioning strategies increase the parallelization efficiency significantly,
compared to simple parallelization approaches, the improvement can be insufficient, especially when
the number of processors is large.

Recently, we developed a hierarchical partitioning strategy that is well suited for the multilevel structure
of MLFMA [13]. In this strategy, clusters and their fields are simultaneously partitioned, and we
adjust the number of partitions by considering the number clusters and the number of samples at each
level. As an example, Fig. 1 presents a hierarchical partitioning of a four-level tree structure among
eight processors labeled 1 to 8. Each level is represented by a three-dimensional rectangular prism.
Dimensions of prisms represent the number of clusters and the number of field samples in θ and
φ directions. From a level to the next higher level, the number of clusters decreases by a factor of
four, while the number of samples in each direction increases by a factor of two. At the lowest level,
clusters are distributed among eight processors, and each cluster is assigned to a single processor,
without any partitioning of field samples. At the next level (l = 2), field samples along the θ direction
are partitioned among two groups of processors, while the number of cluster partitions is reduced to
four. We note that samples of each cluster at this level are shared by two processors. In addition,
there is no partitioning in the φ direction to avoid excessive communications during the interpolation
and anterpolation operations. At the third level in Fig. 1, the number of cluster partitions is reduced
to two, while samples along θ are distributed among four groups of processors. Finally, at the highest
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Fig. 1. Hierarchical partitioning of a four-level tree structure among eight processors labeled 1 to 8.

level, clusters are not distributed, while field samples are partitioned along the θ direction among eight
processors.

3.1. Hierarchical Partitioning

In general, consider a hierarchical parallelization of MLFMA among p = 2i processors for some
integer i. We choose the number of cluster partitions at level l as

p l,c = max
{

p

2(l−1)
, 1

}
= max

{
p 2(1−l), 1

}
. (16)

Then, the number of clusters assigned to each processor can be approximated as

Np
l ≈ Nl

p l,c
≈

{
2(1−l)N1/p, l ≤ log2(p)

4(1−l)N1, l > log2(p)

}
. (17)

In addition, samples of fields are divided into

p l,s =
p

p l,c
= min

{
2(l−1), p

}
(18)

partitions along the θ direction, and the number of θ samples assigned to each processor is

Sθ,p
l ≈ Sθ

l

p l,s
≈

{
Sθ

1 , l ≤ log2(p)
2(l−1)Sθ

1/p, l > log2(p)

}
. (19)

Also considering the sampling in the φ direction, the total number of samples per processor can be
appoximated as

Sp
l = Sθ,p

l Sφ
l ≈

{
2(l−1)S1, l ≤ log2(p)

4(l−1)S1/p, l > log2(p)

}
. (20)

3.2. Aggregation Stage

Aggregation from a level l to the next higher level (l + 1) starts with one-to-one communications
among processors for 1 < l < L. Data exchanges are required between processors to inflate the local
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Fig. 2. Large metallic objects involved in scattering problems solved by the parallel MLFMA implementation. (a) Sphere,
(b) NASA Almond, (c) wing-shaped object, and (d) Flamme.

data in accordance with interpolation requirements. In general, each processor exchanges data with
two other processors, and the communication time is bounded as

tint,l ≤ N1S
φ
1 /p, (21)

which is independent of l. We note that aggregations at the lowest level do not involve one-to-one
communications to inflate data, since samples are not partitioned in this level. After interpolations
and shift operations, radiated fields of clusters at level (l + 1) are obtained. If l ≤ log2(p), half of
the produced data is exchanged between pairs of processors to modify the partitioning in accordance
with the hierarchical strategy. The communication time required for those exchanges is bounded as

texc,l ≤ N1S1/p, (22)

which is again independent of l.

3.3. Translation Stage

Using the hierarchical partitioning strategy, one-to-one communications are also required during the
translation stage for levels l ≤ log2(p). Because clusters are partitioned and some translations are
needed among clusters located in different processors. These communications are performed by pairing
processors and transferring radiated fields of clusters between the pairs. Each processor is paired one
by one with other (p l,c − 1) = p 2(1−l) − 1 processors. Once a pairing is established, radiated fields
are transferred. The communication time for these transfers is bounded as

ttrans,l ≤ N1S1/2(l−1), (23)

which depends on the level. Communications during translations may become significant for the
lower levels, i.e., when l is small. In fact, due to these communications, the translation stage is the
major bottleneck in the hierarchical parallelization of MLFMA [20]. In addition to inter-processor
translations, there are also intra-processor translations, which are related to clusters located in the

10-8                                                                                                                                                                  EWS 2008



Table 1. Scattering Problems Discretized with More Than 100 Million Unknowns

Smallest Number of Truncation Near-Field BiCGStab
Problem Size Unknowns Levels Box Size Clusters Numbers Sparsity Iterations
Sphere 360λ 135,164,928 10 0.176λ 23,631,268 5–1009 8.19 × 10−7 23
Almond 715λ 125,167,104 11 0.175λ 17,213,028 5–1982 9.29 × 10−7 20
Wing 400λ 121,896,960 10 0.195λ 10,590,407 6–1118 1.17 × 10−6 17

Flamme 720λ 134,741,760 11 0.176λ 16,209,969 5–1996 1.07 × 10−6 44

Table 2. Processing Time and Efficiency for the Solution of Problems in Table 1

16 Processors 32 Processors 64 Processors
Problem Processing Time Processing Time Efficiency Processing Time Efficiency
Sphere 975 minutes 511 minutes 96% 292 minutes 84%
Wing 546 minutes 289 minutes 94% 162 minutes 84%

Almond 769 minutes 394 minutes 98% 215 minutes 90%
Flamme 1186 minutes 646 minutes 92% 345 minutes 86%

Table 3. Memory and Efficiency for the Solution of Problems in Table 1

16 Processors 32 Processors 64 Processors
Problem Total Memory Total Memory Efficiency Total Memory Efficiency
Sphere 424 GB 438 GB 97% 467 GB 91%
Wing 431 GB 443 GB 97% 500 GB 86%

Almond 385 GB 414 GB 93% 471 GB 82%
Flamme 427 GB 455 GB 94% 513 GB 83%

same processor and that can be performed without any communication.

3.4. Disaggregation Stage

In the disaggregation stage, operations in the aggregation stage are performed in a reverse manner.
When incoming fields are calculated at cluster centers at a level l ≤ log2(p)+1, partitioning is modified
via data exchanges among processors. Then, incoming fields at cluster centers are anterpolated and
shifted to the centers of subclusters. Finally, data produced by anterpolation operations is deflated via
communications between processors.

4. RESULTS

Using the hierarchical partitioning strategy, we are able to solve very large electromagnetics problems
discretized with more than 100 million unknowns. As an example, we present the solution of scattering
problems involving various metallic objects depicted in Fig. 2. These are (a) a sphere of radius 180λ,
(b) a 400λ long wing-shaped object with sharp edges and corners, (c) the NASA Almond of length
715λ, and (d) the stealth airborne target Flamme with a maximum dimension of 720λ. The sphere
is illuminated by a plane wave propagating in the −x direction with the electric field polarized in
the y direction (H polarization). Other three objects are illuminated by a plane wave propagating in
the x-y plane at a 30◦ angle from the x axis with the electric field polarized in the z direction (V
polarization). Problems are formulated with the combined-field integral equation and solved iteratively
by using the biconjugate-gradient-stabilized (BiCGStab) algorithm.

In this study, our major purpose is solving very large electromagnetics problems both fast and
accurately. Our comments regarding these solutions are as follows:
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Fig. 3. Details of the processing time for the solution of scattering problems listed in Table 1. (a) Sphere, (b) NASA
Almond, (c) wing-shaped object, and (d) Flamme.

• Accuracy: Problems are solved accurately by discretizing objects with λ/10 triangles. Both near-
field and far-field interactions (matrix elements) are calculated with maximum 1% error. We
note that the accuracy affects the efficiency of solutions significantly. For example, most of the
communications during aggregation and disaggregation stages could be avoided by reducing the
number of interpolation points. This would increase the parallelization efficiency and reduce the
processing time, but the accuracy would deteriorate. In addition, solutions could be relaxed by
using coarser discretizations or by reducing the truncation numbers, which would enable the
solution of larger problems by sacrificing the accuracy.

• Efficiency: Problems are solved efficiently with the minimum processing time. Larger problems
could be solved at the cost of increasing processing time by performing some of the compu-
tations on the fly and reducing the memory requirements. Such tricks would also increase the
parallelization efficiency since the computations would dominate the communications. In addition,
problems are solved on a 16-node cluster of relatively fast 3.0 GHz Intel Xeon processors. Using
slower processors would increase parallelization efficiency due to slower computations, but the
processing time would also increase.

Table 1 lists important parameters related to solutions. Tree structures, which involve 10–11 levels and
10–24 million clusters, are constructed by using a top-down clustering scheme. Truncation numbers
vary from 5 to 1996, and the sparsity of near-field interactions is about 10−6 for all problems. Iterative
solutions involve 17 to 44 iterations for 10−3 residual error. Table 2 presents the processing time
when solutions are parallelized among 16, 32, and 64 processors. In addition to total times including
setup and iterative solution parts, we provide the parallelization efficiency obtained for 32 and 64
processors with respect to 16 processors. Using 64 processors, the parallelization efficiency in terms
of processing time is more than 80% for all problems. Due to this relatively high efficiency provided
by the hierarchical partitioning strategy, we are able to perform each solution in 3 to 6 hours. Table 3
lists the total memory required for solutions. Increasing the number of processors raise the memory
requirement since the efficiency of the parallelization is not perfectly 100%. Nevertheless, using 64
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Fig. 4. Details of the matrix-vector multiplications for the solution of scattering problems listed in Table 1. (a) Sphere,
(b) NASA Almond, (c) wing-shaped object, and (d) Flamme.

processors, the parallelization efficiency in terms of memory usage is also more than 80% for all
problems. Solutions using 64 processors are detailed in the next subsections.

4.1. Details of Processing Time

Fig. 3 presents the details of the processing time for 64-processor solutions. We observe that the
calculation of near-field interactions and the iterative solution are dominant parts. The processing
time for near-field interactions is perfectly balanced among processors for all cases, except for the
wing-shaped object. We use load-balancing algorithms in order to distribute near-field interactions
evenly among processors. For the wing-shaped object, however, this strategy does not lead a perfect
parallelization in terms of processing time. Because, we calculate all interactions accurately with 1%
error by using adaptive integration methods, and the number of integration points, thus the processing
time, for an interaction depends on the relative positions of the basis and testing functions. On the
discretized wing-shaped object, there are very difficult interactions that require longer processing times,
compared to other interactions. Using a load-balancing algorithm without considering the computation
time, those difficult interactions are accumulated in some processors, leading to unequal processing
times for the near-field stage. Nevertheless, we still prefer distributing near-field interactions equally
among processors, since this is optimal in terms of memory and it is difficult to guess the computation
time for each interaction a priori. Finally, for 64-processor solutions, Fig. 4 presents the details of
matrix-vector multiplications, which involve near-field, aggregation, intra-processor translation, inter-
processor translation, and disaggregation stages.

4.2. Details of Memory Usage

Fig. 4 presents the details of the memory usage for 64-processor solutions. Instead of processors, we
consider memory used in each computing node from 1 to 16. A majority of memory is required to
store near-field interactions and radiation/receiving patterns of basis and testing functions. Another
significant contribution is due to aggregation/disaggregation arrays, which contain radiated and in-

EWS 2008                                                                                                                                                                 10-11



0 4 8 12 16
0

5

10

15

20

25

30

35

Processors

M
em

or
y 

(G
B

) Aggregation/Disaggregation

Radiation/Receiving Patterns

Near-Field Geometry/Clustering

0 4 8 12 16
0

5

10

15

20

25

30

35

Nodes

M
em

or
y 

(G
B

)

(a) (b)

0 4 8 12 16
0

5

10

15

20

25

30

35

Nodes

M
em

or
y 

(G
B

)

0 4 8 12 16
0

5

10

15

20

25

30

35

Nodes
M

em
or

y 
(G

B
)

(c) (d)

Fig. 5. Details of memory used for the solution of scattering problems listed in Table 1. (a) Sphere, (b) NASA Almond,
(c) wing-shaped object, and (d) Flamme.

coming fields of clusters calculated during matrix-vector multiplications. Memory used in computing
nodes are not equal, mostly due to different amounts of radiation and receiving patterns of basis and
testing functions assigned to processors. Those patterns are distributed according to the partitioning of
the tree structure. In general, lowest-level clusters are distributed equally among processors. However,
populations of clusters, i.e., numbers of basis and testing functions in clusters, may vary significantly.
A load-balancing algorithm, which accounts for populations of clusters, could be used to improve
the distribution of radiation and receiving patterns. However, this method would deteriorate the load-
balancing of matrix-vector multiplications in terms of both memory and processing time.

4.3. Radar Cross Section

To demonstrate the accuracy of solutions, we present the bistatic radar cross section (RCS) values
for the sphere of radius 180λ. In Fig. 6(a), the normalized RCS (RCS/πa2, where a is the radius of
the sphere in meters) is plotted in decibels (dB). In the figure, 0◦ and 180◦ correspond to the back-
scattering and forward-scattering directions, respectively. Computational values are compared with
analytical values obtained by a Mie-series solution. For an easy comparison, Fig. 6(b) presents the
same results from 175◦ and 180◦. We observe that computational and analytical results perfectly agree
with each other. In Fig. 7, we present RCS values for large geometries depicted in Figs. 1(b)–(d),
namely, the NASA Almond, a wing-shaped object, and the Flamme. The normalized RCS (RCS/λ2)
is plotted in dB on the x-y plane as a function of the bistatic angle. In the plots, 30◦ and 210◦
correspond to back-scattering and forward-scattering directions, respectively. Fig. 7(a) present VV
and VH polarizations, respectively, of the RCS of the NASA Almond. We observe relatively high
co-polar RCS values from 90◦ to 210◦, while the RCS in the back-scattering direction is considerably
small. Fig. 7(b) present RCS values for the wing-shaped object. In this case, the back-scattered RCS
is quite large, and we observe peaks at diverse angles due to strong reflections. Finally, Fig. 7(c)
present RCS values for the stealth airborne target Flamme. The back-scattered RCS of this target is
extremely low; it is 100 dB less than the forward-scattered RCS.
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Abstract − This paper presents a class of algorithms based on Uniform Theory of Diffraction 
(UTD) for multiple edge transition zone diffraction.  It aims to discuss simulation results for 
comparison of UTD and its improved version including slope UTD model (S-UTD) and slope 
UTD with convex hull model (S-UTD-CH). Comparison of the models are presented for both 
accuracy and computation time. Moreover, S-UTD is compared with a particular numerical 
solution of Kirchhoff-Huygens integrals, i.e., Physical Optics (PO). Results of extensive 
simulations are summarized, and accuracy of S-UTD and PO based model are discussed.  

 

1. INTRODUCTION 
Multiple edge diffraction has been considered in many radio propagation models for radio network 
planning in radio communications and broadcasting systems. When one edge is placed in the transition 
zone of the neighbouring edge (i.e., multiple edge transition zone diffraction), direct application of ray 
optical techniques such as Uniform Theory of Diffraction (UTD) fail [1-5]. Improvements to UTD in 
order to handle multiple edge transition zone diffraction problems have been discussed in [4] and its 
references. On the other hand, field predictions in environment models involving multiple edge transition 
zones could easily be solved numerically via physical optics (PO) based approaches [6, 7]. In general, 
there is, however, a trade off between accuracy and computation time when radio propagation for multiple 
edge diffraction problems is considered [1-5].  

In this paper, firstly, UTD based models are reviewed shortly and improved models of UTD proposed 
in [2-5] are described briefly. Then, simulation results for comparison of improved UTD solutions, namely, 
Slope UTD (S-UTD) [1-3] and Slope UTD with convex hull (S-UTD-CH) [4] are presented. Finally, 
comparison of S-UTD/S-UTD-CH with physical optics (PO) solutions based on Kirchhoff-Huygens 
approximation [6, 7] is presented, and their accuracy and computation time is discussed.  

 
2. SLOPE UTD (S-UTD) 
UTD has been used to estimate field strength in complex building structures urban and suburban 
environments. In case of multiple edge transition zone diffraction, UTD is unable to predict 
accurate field strengths [1], and requires a first order derivative, known as slope UTD (S-UTD), 
to improve its accuracy [1-5].  For a single edge, the field strength predicted by S-UTD is [1-5] 

( ) ( ) jks
s

i
i esAd

E
DEE −







∂
∂

+= )(α
α

α .                          (1) 

where iE is the incident field, α is the angle between the incident and the diffracted ray as 
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illustrated in Fig. 1, ( )sA  is the spreading factor and k is the wave number. ( )αD  and 

( )αsd are amplitude and slope diffraction coefficients, respectively [1]. The distance parameters 

L and sL , appearing in amplitude and slope diffraction coefficients have to be calculated via 

amplitude, slope and phase continuities as discussed in [2-5]. In case of multiple transition zone 

diffraction, it has been shown that shadow boundary points, ( 421  and , PPP ) as illustrated in Fig.1, 

should be taken into account in calculating the distance parameters, L  and sL  [2-5]. 

 

Fig. 1 Ray geometry of multiple knife edge diffraction for S-UTD 

 
3. SLOPE UTD WITH CONVEX HULL (S-UTD-CH) 
S-UTD-CH is based on the use of Fresnel Zone concept along with S-UTD, and provides an 
improvement to S-UTD implementation in terms of computation time and accuracy. As discussed 
in detail in [4, 5], Fresnel zone concept is not new, and has widely been used in UTD based radio 
propagation modeling in urban/suburban and rural areas. For multiple edge geometry such as the 
one shown in Fig. 1, convex hull is described as a polygon formed by some selected edges 
between the transmitter and receiver positions. Selection of the edges (or ignored edges) forming 
the convex hull is based on Fresnel zone concept and implementation of the algorithm is 
described in [4]. The motivation for this approach was to reduce both computation time and error 
arising in S-UTD model itself when the number of diffraction exceeds 10 [1-4].  
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4. COMPARISON OF RAY THEORETIC MODELS 
To compare accuracy of ray theoretic models (UTD, S-UTD and S-UTD-CH), a particular 
multiple edge geometry having 9 equally-spaced edges (or screens) is considered.  All 
simulations are conducted in the following parameter ranges that might represent a canonical 
multiple edge transition zone diffraction geometry as reported in [2, 4]: 

The transmitting and receiving antenna heights (hT, hR): 18m and 1.5m  
Heights of edges (h): uniformly distributed with [18-∆h, 18-∆h],   ∆h=1, 3 and 6 
Distance between the edges (d): 25 and 50m 
Operating frequency (f): 0.9GHz, 1.8GHz and 2.1GHz 
Instead of analyzing contributions of each parameter range to the field strength prediction or 
accuracy of the approach, a combined parameter called transition region width [2] is used in 
simulations. For h∆>>d , transition region width (TRW) is calculated [2, 4] via   

d
hTRW
λ

2∆
≅                       (2) 

Algorithms for UTD, S-UTD and S-UTD-CH have been developed in MATLAB 
environment, and simulations were performed to cover all parameter ranges listed above. Table 1 
shows the mean ( µ ) and standard deviation (σ) of error for excess loss predicted by UTD and 
S-UTD-CH assuming that S-UTD is the most accurate one. All parameter ranges listed above can 
be represented by some TRW values calculated from (2). In Table 1, the rightmost column 
represents “average number of ignored edges” by S-UTD-CH model (for each run, actually this is 
an integer number out of 9 edges). Average computation time of each model including S-UTD is 
also presented in Table 1. In simulations, there were 10 runs for each model at each TRW value, 
and mean error ( µ ) and standard deviation (σ) values of error are calculated accordingly. In all 
model implementation, phase summing of ray fields is used. 
 

Table 1 Comparison of UTD based models (accuracy and computation time) 
TRW µ (dB) 

(S-UTD-CH) 
σ (dB) 

(S-UTD-CH) 
µ (dB) 
(UTD) 

σ (dB) 
(UTD) 

Time (s) 
(S-UTD-CH) 

Time (s) 
(S-UTD) 

Time(s) 
(UTD) 

Edge 
(#) 

0,2 0,01 0,01 4,97 2,22 937,2 1113,1 5,0 0,2 
0,3 0,01 0,02 4,31 3,00 962,8 1166,1 5,6 0,3 
0,5 0,04 0,05 3,21 3,14 618,8 1121,0 5,3 0,8 
1,1 0,09 0,12 3,92 2,50 179,4 1133,7 5,5 2,0 
1,3 0,08 0,09 3,42 3,73 208,8 1192,0 6,0 1,7 
2,2 0,09 0,09 1,35 1,03 108,8 1085,4 5,2 3,1 
2,5 0,11 0,18 1,47 1,35 46,1 1092,6 5,1 2,9 
4,3 0,09 0,08 1,00 0,79 3,4 1111,3 5,4 3,9 
4,9 0,13 0,18 1,29 1,31 94,8 1043,2 5,0 2,2 
5,0 0,09 0,09 1,29 0,86 2,4 1091,7 5,5 4,3 
8,6 0,14 0,30 1,48 1,24 32,0 1006,5 4,5 3,9 
9,7 0,09 0,09 1,16 1,47 23,2 1076,1 5,0 3,5 
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10,1 0,14 0,12 0,91 1,35 3,9 1040,0 4,9 4,6 
 

First, UTD and S-UTD can be compared for accuracy as reported in [2, 4].  Then, S-UTD 
and S-UTD-CH can be compared for computation time. For multiple transition zone diffraction 
for TRW=0.2 or lower, while UTD is faster (~5 s) and simpler to implement than S-UTD 
(~1100s), it is not as accurate as S-UTD (>4 dB mean error).  Therefore, S-UTD-CH can be 
used in some TRW ranges (TRW>1). For example, S-UTD-CH predicts field strength as accurate 
as S-UTD for TRW>0.5 with relatively smaller computation time (179 s vs. 1133 s). In such 
cases, eliminating one edge might reduce computation time pretty much due to the complexity of 
slope diffraction algorithm itself. However, S-UTD-CH has no advantage for very small TRW 
values (<0.5) where there is no edge ignored in this case. For TRW>3 values, UTD might be 
satisfactory for accurate prediction if small error can be tolerated as reported in [4].  
 
5. COMPARISON OF RAY THEORETIC MODELS WITH PO 
Another class of models to solve multiple edge diffraction problems is based on numerical evaluation of 
physical optics (PO) integrals or so-called PO solutions [5]. Since these models involve numerical 
computation of PO integrals at each point in field domain, they are considered to have ultimate accuracy 
[2, 6 and 7]. However, these models have extremely large computation times compared with improved 
UTD models introduced in section 2. In this section, accuracies and computation time of improved UTD 
models are compared with a PO model that has been reported in [6]. In this sense, this would be the first 
time that the accuracy of ray theoretic models, i.e. S-UTD and S-UTD-CH, is statistically compared with a 
well-known PO model for multiple edge diffraction problems. In simulations, structural parameters of 
screens for the PO model proposed in [6] were chosen appropriately to simulate absorbing knife edges 
(screens).  

There will be two different simulations for accuracy and computation time in this section. The first 
canonical multiple edge geometry in section 2 is used with the following parameters:  
The transmitting antenna height (hT): 5 and 10m, Heights of edges (h): uniformly distributed over [10-∆h, 
10-∆h] with ∆h=4m, Distance between the edges (d): 50m, operating frequency (f): 1.8GHz 

Firstly, randomly distributed edge heights for 10 equally-spaced edges are generated. Then, the field 
strength is calculated at the tip of the last edge using the three models for the height distribution. There 
was a total of 25 height distributions generated in simulations. The PO model [4] is taken as the reference 
model since it is a fully numerical algorithm and highest accuracy compared with the ray models 
(S-UTD-CH and S-UTD). Then, the mean error (µ) and standard deviation (σ) for excess loss predicted by 
ray theoretic models, i.e. S-UTD-CH [4] and S-UTD [2-4], are calculated accordingly. Table 2 presents 
the results of the simulations for two transmitting antenna heights. Here, since the motivation was to 
investigate the accuracy of S-UTD compared with PO for multiple edge transition zone diffraction, only 
lower transmitting antenna heights (hT=5, 10m) are considered (transition zone diffraction situation). For 
elevated transmitting antenna heights, UTD is satisfactory for most cases [2, 4 and 7] and the field 
predicted is less dependent on transition zone diffraction effects. Because direct rays or single diffracted 
rays are considered to dominant in this case, and their contributions to the received field strength are 
relatively higher than higher order rays.  
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As shown in Table 2, S-UTD exhibits a mean error of less than 0.6 dB after 9 diffractions. 
Simulations were carried out up to 9 diffractions since S-UTD has an increasing error after 9 diffractions 
for equally-spaced edge geometry as reported in [2, 3]. This error inherent in S-UTD was one of the 
motivations in developing S-UTD-CH algorithm in [4].  As it is well-known, PO model requires very 
large computation times since it is based on computation of field at each point over the screens. Therefore, 
S-UTD and PO were not compared for computation time. 

A rather fast and a similar algorithm based on selection of dominant edges (isolated diffracting 
edges-IDE) contributing much to the field strength has been proposed and compared with the PO model in 
[7]. However, the accuracy of the model was reported to be unsatisfactory, especially, for lower 
transmitting antenna heights where transition zone diffraction is the dominant mechanism [2-7]. It was the 
transition zone diffraction effects that cause this error.  

 
Table 2 Comparison of ray theoretic models with the PO model for accuracy 

hT(m) 
µ (dB) 

(S-UTD-CH) 
σ(dB) 

(S-UTD-CH)
µ (dB) 

(S-UTD) 
σ(dB) 

(S-UTD) 
5 0.42 7.51 0.58 7.43 

10 0.55 7.29 0.60 7.28 
 
The second canonical multiple edge geometry in section 2 is used with the same parameters for elevated 
transmitting antennas. (hT): 15 and 20m 

Firstly, again randomly distributed edge heights for 15 equally-spaced edges are generated. Then, the 
field strength is calculated at the top of the last edge using the three models (UTD, S-UTD-CH and PO) 
for the height distribution. There was a total of 20 height distributions generated in simulations. Then, the 
mean error (µ) and standard deviation (σ) for excess loss predicted by ray theoretic models, i.e. 
S-UTD-CH, are calculated accordingly. Also ray theoretic models are compared with each other. Table 3 
presents the results of the simulations for elevated two transmitting antenna heights. Here, since the 
motivation was to investigate the accuracy of S-UTD-CH compared with PO and the accuracy of 
S-UTD-CH compared with UTD for multiple edge transition zone diffraction, higher transmitting antenna 
heights (hT=15, 20m) are considered.  

In Table 3, leftmost column shows the transmitter height. Next three column shows the average 
computation time. Simulations are made in C/C++ environment. Next two columns shows mean error and 
standard deviation for excess loss predicted by S-UTD-CH. The rightmost columns show the mean error 
and standard deviation for excess loss between S-UTD-CH and UTD. S-UTD-CH exhibits a mean error of 
less than 1.33 dB after 14 diffractions. Moreover, as can be seen from the Table 3, UTD is not as accurate 
solution as S-UTD-CH. Furthermore, S-UTD-CH is faster than the PO method. 
 

Table 3 Comparison of S-UTD-CH with the PO and UTD for accuracy and computation time 
hT(m) µ (s) 

(UTD) 
µ (s) 

(S-UTD-CH) 
µ (s) 
(PO) 

µ (dB) 
(PO) 

σ(dB) 
(PO) 

µ (dB) 
(UTD) 

σ(dB) 
(UTD) 

15 128 789 802 1.33 7.36 3.14  7.85 
20 101 4 802 -1.27 7.53  2.81 2.13 
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6. CONCLUSION 
In this paper, comparison of UTD and its improved version for multiple transition zone diffraction 
problems are presented. Transition region width (TRW) has been used as a geometrical parameter for 
measuring transition zone diffraction effects. For smaller TRW values, contribution of S-UTD cannot be 
ignored while UTD without slope diffraction can be used for relatively larger TRW values. For multiple 
transition diffraction, S-UTD has larger computation time with higher accuracy while UTD has small 
computation time with lower accuracy.  It has been shown that S-UTD-CH that uses a selection 
algorithm of diffracting edges based on Fresnel zone concept would be used for a range of TRW values. 
S-UTD-CH provides not only very low computation time but also very accurate results for multiple edge 
transition zone diffractions in this TRW range (~1<TRW<3). 

On the other hand, S-UTD and S-UTD-CH have been compared with the PO [6] for the first time for 
accuracy in this paper. It has been shown that S-UTD exhibits very small error for 9 diffractions (all are in 
transition zones). Furthermore, S-UTD-CH has been compared with PO and UTD for accuracy and 
computation time. It has been shown that S-UTD-CH shows very small error for 14 diffractions with less 
computation time.  

As a conclusion, UTD based models can still be used for radio planning tools due to the fact that they 
have relatively small computation time. However, they still require further improvements for more 
accurate field predictions in case of multiple edge transition zone diffractions.   
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Coupling Structures 
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Department of Electrical and Electronics Eng., 38039, Kayseri 
 

Abstract − In this work, an alternative method based on adaptive neuro-fuzzy inference 
system (ANFIS) was introduced to compute the even- and odd-mode characteristic 
impedances of multilayer homogeneous coupling structures (MHCSs). The ANFIS is a 
fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural 
network. It has the advantages of expert knowledge of FISs and learning capability of 
artificial neural networks. A hybrid learning algorithm, which combines the least square 
method and the backpropagation algorithm, is used to identify the parameters of ANFIS. 
The ANFIS results are compared with the results available in the literature. There is very 
good agreement between the results of ANFIS models and conformal mapping method.  

 
1. INTRODUCTION  

Multilayer monolithic microwave integrated circuits (MMICs) which utilize narrow width 
microstrip lines on thin dielectric materials have received a widespread attention [1-3]. Furthermore, as 
a means of fabricating unique and multifunctional circuits, which are difficult in single layer 
configurations, these technologies have shown considerable capability. Various coupling structures 
incorporating multilayered dielectrics have been studied in the literature [4-8].  
 
The multilayer homogeneous coupling structure (MHCS) was proposed and analyzed by Gillick et al. 
[5] in 1993. It offers reduced current crowding at the conductor edges, and is particularly suitable for 
integration with coplanar waveguide, slot line, and microstrip transmission lines in multilayer MMICs. 
The closed-form analytical formulas for the characteristic impedances and coupling coefficients of 
MHCS were derived by using conformal mapping method (CMM) in [5]. Synthesis formulas for 
computing the physical dimensions of MHCSs for the required design specifications have been 
proposed by Guney et al. [7, 8]. This kind of transmission lines can be analyzed by using quasi-static 
methods or full-wave methods. The methods used to obtain the characteristic parameters of the 
transmission lines have some disadvantages. While full-wave methods are the most accurate tools for 
obtaining the transmission line characteristics and analytically extensive, quasi-static methods are 
quite simple but do not threaten the dispersive nature of generic transmission line. So they are not very 
attractive for the interactive CAD models. 
 
The adaptive neuro-fuzzy inference system (ANFIS) combines the benefits of artificial neural 
networks and fuzzy inference systems in a single model [9, 10]. Fast and accurate learning, excellent 
explanation facilities in the form of semantically meaningful fuzzy rules, the ability to accommodate 
both data and existing expert knowledge about the problem, and good generalization capability 
features have made neuro-fuzzy systems popular in the last few years [11-16]. A distinct advantage of 
the ANFIS computation is that, after proper training, ANFIS completely bypasses the repeated use of 
complex iterative processes for new cases presented to it. In this study, the even- and odd-mode 
characteristic impedances of MHCSs have been determined with the use of the ANFIS. In order to 
further validate the ANFIS method, the coupling coefficient is also calculated by using ANFIS results. 
Hybrid learning algorithm, which combines the least square method and the backpropagation 
algorithm, is used to identify the parameters of the ANFIS. The ANFIS results are in very good 
agreement with the results of CMM [5]. Consequently, these good agreements show the validation of 
the proposed ANFIS model.  
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2. DETERMINATION OF CHARACTERISTIC IMPEDANCES OF MHCSs BY USING CMM 
The cross-section of a MHCS is depicted in Figure 1. In this figure, the total thickness of the dielectric 
material with relative permittivity εr is represented by 2H, the conductor spacing between the coupled 
lines is illustrated by 2S, and consequently the gap width in the center ground planes is given by 2W. 
The placing of coupled lines, perpendicular to their ground planes, provides an improved alternative to 
coplanar edged coupled lines, where conductor edge current crowding needs to be minimized [5]. It is 
assumed that the ground planes are infinitely wide and all the conductors are infinitely thin and 
perfectly conducting. 
 

 
Figure 1. Cross-section of a MHCS. 

 
The MHCS supports two fundamental modes, namely even and odd. The even- and odd-mode 
characteristic impedances (Z0) of the MHCS can be evaluated by using the following formulas [5]; 
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ikK  are the complete elliptic integrals of the first kind with the modulus of ki and 
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’. ki
’ is a complementary modulus of ki and equals to 2/12 )1( ik− . 

 
The coupling coefficient Cc is computed by using the following formula [5] 
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3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 
The FIS forms a useful computing framework based on the concepts of fuzzy set theory, fuzzy if-then 
rules, and fuzzy reasoning [9]. The ANFIS is a class of adaptive networks which are functionally 
equivalent to FISs. The ANFIS used in this article implements a first-order Sugeno fuzzy model. For 
this model, a typical rule set with two fuzzy if-then rules can be expressed as follows:  
 

Rule 1: If x ∈  A1 and y ∈  B1 then z1 = p1x + q1y + r1   (5) 
 

Rule 2: If x ∈  A2 and y ∈  B2 then z2 = p2x + q2y + r2   (6) 

2W 

ε r 

2S 
ε r 

2H 
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where Ai and Bi are the fuzzy sets in the antecedent, and pi, qi, and ri are the design parameters that are 
determined during the training process. The ANFIS consists of five layers. Every node i in the first 
layer is an adaptive node with a node function: 
 

2,1),(1 == ixO
iAi μ      (7) 

and 
4,3),(

2

1 ==
−

iyO
iBi μ     (8) 

 
where x (or y) is the input of node i. )x(

iAμ  and )(
2

y
iB −

μ  can adopt any fuzzy membership function 
(MF). In this paper, the generalized bell MFs are used. Parameters in the first layer are referred to as 
the premise parameters. Every node in the second layer represents the firing strength of a rule by 
multiplying the incoming signals and forwarding the product as:  
 

)()(2 yxO
ii BAii μμω == ,     i = 1, 2    (9) 

 
The ith node in the third layer calculates the ratio of the ith rule’s firing strength to the sum of all 
rules’ firing strengths: 
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where iω  is referred to as the normalized firing strengths. The node function in the fourth layer is 
represented by 
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iiiiiii ryqxpzO ++== ωω ,   i = 1, 2    (11) 

 
where iω  is the output of layer 3, and {pi, qi, ri} is the parameter set. Parameters in this layer are 
referred to as the consequent parameters. 
 
The single node in the fifth layer computes the overall output as the summation of all incoming 
signals, which is expressed as: 
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When the premise parameter values of the MF are fixed, the output of the ANFIS can be written as a 
linear combination of the consequent parameters: 
 

222222111111 )()()()()()( rqypxrqypxz ωωωωωω +++++=                      (13) 
 
The least square method can be used to find the optimal values of the consequent parameters. When 
the premise parameters are not fixed, the search space becomes larger and the convergence of training 
becomes slower. The hybrid learning algorithm [9, 10] combining the least-square method and the 
backpropagation algorithm can be used to solve this problem.  
 
4. APPLICATION TO THE PROBLEM 
In this work, the ANFIS successfully introduced to determine the even- and odd-mode characteristic 
impedances of MHCS. The inputs of ANFIS are β, εr, W/H, and S/H, and the output is the 
characteristic impedance. β is a constant, and β = 1 and β = 10 are used to compute even- and odd-
mode characteristic impedance of MHCS, respectively. The ANFIS model used in computing the 
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characteristic impedances of MHCSs is shown in Figure 2. 1701 data sets have been used to train the 
ANFIS models. The ranges of training data sets are among 2 ≤ εr ≤ 21, 0.1 ≤ W/H ≤ 2.0, and  
0.01 ≤ S/H ≤ 0.98. 972 data sets, which are completely different from training data set, were used for 
testing the models. Training an ANFIS with the use of the hybrid learning algorithm to compute the 
even- and odd-mode characteristic impedances of MHCSs involves presenting it sequentially with 
different sets (β, εr, W/H, and S/H) and corresponding characteristic impedances (Z0). Differences 
between the target outputs and the actual outputs of the ANFIS are evaluated by the hybrid-learning 
algorithm. The adaptation is carried out after the presentation of each set (β, εr, W/H, and S/H) until the 
calculation accuracy of the ANFIS is deemed satisfactory according to some criterion (for example, 
when the errors between target and the actual output for all the training set falls below a given 
threshold) or when the maximum allowable number of epochs is reached. The number of epoch was 
500 for training. Three MFs are used for each input variables. The number of rules is then 81 
(3x3x3x3=81). The generalized bell MFs are specified by three parameters. Therefore, the ANFIS 
used here contains a total of 441 fitting parameters, of which 36 (3x3+3x3+3x3+3x3 = 36) are the 
nonlinear parameters and 405 (5x81 = 405) are the linear parameters.  
 

 
Figure 2. ANFIS model for characteristic impedances of MHCS. 

 
5. RESULTS AND CONCLUSION 
The even- and odd-mode characteristic impedance test results obtained by using ANFIS model are 
compared with the results of the CMM [5] in Figure 3. This figure illustrates how the even- and odd-
mode characteristic impedances of MHCS varies with S/H for different values of W/H where εr = 9 
and H =400 μm. It should be noted that the odd-mode characteristic impedances (Z0(o)) of MMCSs 
does not depend on the gap width W [5].It is clear from Figure 3 that the results of ANFIS are in very 
good agreement with the results of the CMM. This very good agreement supports the validity of 
ANFIS method proposed in this study. 
 
It is apparent from eq. (4) that the values of the coupling coefficient can be calculated by using the 
even- and odd-mode characteristic impedance values obtained from the ANFIS. In order to further 
validate the ANFIS method, the coupling coefficient is also calculated by using ANFIS results. The 
test results of ANFIS for the coupling coefficient are compared with the results CMM [5] in Figure 4 
for εr = 9 and H = 400 μm. It is clear from Figure 4 that the ANFIS results are in very good agreement 
with the results of CMM. 
 
As a consequence, a new method based on the ANFIS was successfully introduced to compute the 
even- and odd-mode characteristic impedances of MHCS. The coupling coefficient is also computed 
by using ANFIS results. The close agreement is satisfied between the results available in the literature. 
A hybrid learning algorithm is used to optimize the parameters of ANFIS. In this algorithm, the 
parameters defining the shape of the MFs are identified by the backpropagation algorithm while the 
consequent parameters are identified by the least square method. The main advantage of the method 
proposed here is that only one ANFIS model is used to calculate both the even- and odd-mode 
characteristic impedances of MHCSs. This method can easily be applied to other microwave problems. 
The ANFIS offers an accurate and efficient alternative to previous techniques for the calculating the 
characteristic impedances of MHCSs.  
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Figure 3. Comparison results of ANFIS and CMM [5] for the even- and odd-mode characteristic 
impedances of MHCS with εr = 9 and H = 400 µm. 
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Figure 4. Comparison results of ANFIS and CMM [5] for coupling coefficients of MHCSs with εr = 9 
and H = 400 µm. 
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This study presents an initiative (European remote Radio Laboratory-ERRL) that aims to develop 
a remote laboratory platform to provide theoretical and particularly practical RF and Microwaves 
training to engineering students, graduates and other technical personnel via distant access to 
high technology equipment through the Internet. As a transnational laboratory, the ERRL intends 
to allow its users perform web-based experiments, and follow related course materials in Radio 
frequency (RF), microwave and communication field.  
 
ERRL experimental content includes vide range of areas in RF and microwaves: from reflection 
and transmission (return loss, SWR, reflection coefficient) concepts to modulations, antenna 
measurements and time and frequency analysis of signals using state of the art instrumentation 
including spectrum analyzer, vector network analyzer (VNA) and a digital oscilloscope at various 
frequency ranges. 
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