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Abstract — A novel and efficient method which ad-
dresses both the perfect reconstruction and the sig-
nal extension problems of polyphase IIR filter banks
is presented. The method involves embedding the fi-
nal filter states of the analysis filters into the analysis
output in a nonexpansive way in the analysis stage
and still satisfying perfect reconstruction by solving
a system of linear equations in the synthesis stage in
order to recover the lost data due to filter state em-
bedding. The superiority of the proposed method is
justified by the presented image coding results.

1 Introduction

Perfect reconstruction property of a maximally dec-
imated infinite impulse response (IIR) filter bank
based on a polyphase implementation as shown in
Figure 1 requires the synthesis polyphase filters to
be the inverses of the analysis polyphase filters. In
most cases the inverses have poles outside the unit
circle resulting in unstable synthesis filters. This
difficulty is overcome by implementing the inverses
as anticausal filters because anticausal filters with
poles outside the unit circle are stable. Anticausal
inverses for IIR filter banks were introduced by
Husoy and Ramstad [1], and then conditions for
perfect reconstruction were investigated by Chen
and Vaidyanathan [2]. Thus perfect reconstruction
is achieved by decomposing polyphase filters into
minimum- and maximum-phase components in the
analysis stage, e.g. E(z) = B(z)G(z), and imple-
menting the anticausal inverse of the maximum-
phase component and the causal inverse of the
minimum-phase component in the synthesis stage,
e.g. R(z) = G−1(z−1)B−1(z), provided that the
initial filter states of the anticausal inverse are set
correctly related to the final filter states of the
maximum-phase component [3, 4].

In this paper we suggest a new method to include
the final filter states of the analysis maximum-phase
filters into their filter output in a nonexpansive way
and recovering the lost information due to non-
expansive embedding by solving a system of lin-
ear equations which is simply described by a con-
stant matrix. The method improves on the previ-
ous methods [4, 5] to a more powerful and more
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Figure 1: Polyphase implementation of a uniform
maximally decimated M -channel filter bank where
T is a modulation matrix e.g. the DFT matrix.

complete (or comprehensive) solution covering the
signal extension solutions at the boundaries reduc-
ing the transient effects [6, 7]. We will start with
explaining anticausal inverses and the relationship
between the initial filter states of the anticausal in-
verse and the final filter states of the maximum-
phase filter. Later we will explain our embedded
filter states (EFS) method in terms of the proce-
dures to be implemented in both the analysis and
synthesis stages. Finally we will present the image
compression results and our conclusion.

2 Anticausal inverses

Given that a causal stable maximum-phase filter
has following state-space description[

s(n + 1)
y(n)

]
=

[
A B
C D

]
︸ ︷︷ ︸

R

[
s(n)
x(n)

]
(1)

where s(n) =
[
s1(n) s2(n) · · · sN (n)

]T is the
state-vector, x(n) is the filter input, y(n) is the filter
output, and R is said to be the realisation matrix of
the implementation. After processing an L-sample
filter input x(n), we would have an L-sample filter
output y(n), and the final state-vector s(L).

Let us to recover the filter input x(n) from the fil-
ter output x(n) using the inverse filter G−1(z). As
the inverse filter G−1(z) will be unstable, we have to
implement the inverse filter as an anticausal filter
Ĝ(z) = G−1(z−1). Let us write down the state-
space description for the anticausal inverse filter
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Ĝ(z), [
ŝ(n + 1)

ŷ(n)

]
=

[
Â B̂
Ĉ D̂

]
︸ ︷︷ ︸

R̂

[
ŝ(n)
x̂(n)

]
(2)

and let the realisation matrix of Ĝ(z) to be the
inverse of the realisation matrix of G(z), i.e. R̂ =
R−1.

Since the filter input of Ĝ(z) is the time-reversed
filter output G(z) of i.e. x̂(n) = y(L − 1 − n),
the filter output of Ĝ(z) should also be the time-
reversed filter input of G(z) i.e.

ŷ(n) = x(L − 1 − n), (3)

when we let the initial state-vector of Ĝ(z) be the
final state-vector of G(z) i.e. ŝ(0) = s(L) [2]. Ulti-
mately the two state-vectors are related as

ŝ(n) = s(L − n) (4)

which can be derived using equations (2) and (2)
[2].

3 Embedded filter states (EFS) method

The embedded filter states (EFS) method can be
explained simply that in the analysis stage, the final
filter states of G(z) are embedded into the filter out-
put in a nonexpansive way in order to ensure that
the final output has the same number of samples
as the filter input. In other words after processing
L-sample input and appending the final filter states
s(L) (N samples) to the filter output, only the last
L samples are retained. In the synthesis stage the
procedure is to recover the input signal of the anal-
ysis stage using the anticausal inverses of the filters
used in the analysis stage. The following sections
explain the use of linear algebra concepts in order
to recover the first N -samples of the input signal
although the first N -samples of the filter outputs
were discarded and how to incorporate the signal
extension concepts within the EFS algorithm.

4 Final-state and final-output equations

Using the iterative next-state equations given in
(1), we can arrive at the non-iterative repre-
sentation of final filter state-vector s(N) , in
terms of an filter N -sample input-vector x =[
x(0) x(1) · · · x(N − 1)

]T and initial filter
state-vector s(0)

s(N) = Qs(0) + Px (5)

where both Q and P are N × N matrices. Let us
call this equation the final-state equation and the

matrices Q and P as the initial-state-to-final-state
(ISFS) matrix and the input-to-final-state (IFS)
matrix respectively. Note that, for FIR filters
Q = 0.

Similarly we can write down the filter output-
vector y in terms of filter input-vector x and initial
filter state-vector s(0)

y = Vs(0) + Ux (6)

where both V and U are N × N matrices. Let
us call this equation the final-output equation and
the matrices V and U as the input-to-final-output
(IFO) matrix and the initial-state-to-final-output
(ISFO) matrix respectively.

The input vector x can be recovered from the
final-state equation by solving the system of linear
equations represented by

Px = s(N) − Qs(0) (7)

with known s(N) and s(0). Thus the input vector
x is given by

x = P−1 [s(N) − Qs(0)] . (8)

This equation reduces to

x = P−1s(N). (9)

with zero initial conditions. This equation lets us
to recover the input signal from the final states of
the filter.

4.1 Derivation of IFS and IFO matrices: P
and U

Let us define ik as the k-th column of an N × N
identity matrix IN , i.e.

IN =
[
i1 i2 · · · ik · · · iN

]
, (10)

let s(k)(n) and y(k) be the final filter state-vectors
and the filter output-vectors—containing the last N
samples of the filter output—, obtained after pro-
cessing the unit filter inputs x(k) = ik and with zero
initial conditions s(k)(0) = 0 using the state-space
description given by (1), i.e.

x(k) = ik
s(k)(0) = 0

(11)

where 1 ≤ k ≤ N . Then IFS matrix P is given by

P =
[
s(1)(N) · · · s(k)(N) · · · s(N)(N)

]
.

(12)
Hence each s(k)(N) is the weight-vector of the input
sample x(k−1) on the final filter state-vector s(N).
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Similarly IFO matrix is given by

U =
[
y(1) y(2) · · · y(k) · · · y(N)

]
. (13)

In most cases except the application of EFS
method to infinite-length signals in fragments we
will always have zero input conditions eliminating
the need to derive ISFS and ISFO matrices Q and
V. However Q and V can be calculated in the same
manner, where in this case input vectors are initial-
ized to zero, xk = 0 and the input state vectors are
unit vectors, sk(0) = ik.

4.2 Derivation of final-state and final-
output equation matrices under signal
extension

In real applications e.g. image coding, we have to
consider signal extension in order to ensure border
continuity. Here we will assume that the signal is
extended by N samples at the left boundary, that
is, filter inputs x(k)(n) in the algorithms above in
Section 4.1 would be 2N samples instead of N sam-
ples. For example, below we present the necessary
filter input value used in Section 4.1 in order to
obtain the correct IFS matrix P according to the
half-sample symmetric signal extension:
Half-sample symmetry at the left-boundary (LHS)

x(k) =
[
iTN−k+1 iTk

]T , 1 ≤ k ≤ N (14)

Let PL to represent the IFS matrix supporting
signal extension at the left-boundary for future cor-
respondence.

Although signal extensions at the left-boundary
can be reflected exactly with the calculation of
the IFS matrix P, signal extension at the right-
boundary can not be reflected exactly but only ap-
proximately. In order to do so, we are going to
estimate the output samples, y(L) to y(L+N −1),
which correspond to the filter output for the right-
boundary extended samples, x(L) to x(L + N − 1)
in terms of the final filter state-vector s(L) , i.e.

yR
∼= ỹR = Ks(L) (15)

where yR =
[
y(L) y(L + 1) · · · y(L + N − 1)

]T

and K is an N × N matrix.
The expression for K is derived by considering a

N -sample input signal. Let UR represent the IFO
matrix derived with zero initial conditions using the
filter input-vectors defined for an N -sample signal
extension at the right boundary, e.g.
Half-sample symmetry at the right-boundary (RHS)

x(k) =
[
iTk iTN−k+1

]T , 1 ≤ k ≤ N (16)

and P represent the IFS matrix derived with
the unit input vectors as given in (11). Let us
write down the following final-output and final-
state equations for zero initial conditions

yR = UR x
s(N) = Px (17)

and the relationship between the two quantities as

yR = Ks(N) (18)

then K is given by

K = UR P−1. (19)

Note that K is constant and needs to be initial-
ized only once for each filter.

5 EFS algorithm

Let G(z) be an N -th order maximum-phase filter,
x(n) denote the L-sample filter input, y(n) denote
the corresponding L-sample filter output, v(n) de-
note the final L-sample EFS analysis output and
v̂(n) denote the final L-sample EFS analysis out-
put. The aim is to achieve v̂(n) = x(n).

Analysis Stage:

1. Initialize G(z) with the filter-state vector
t(0) = PL r where r holds the first N samples,
x(0) to x(N − 1), of the input signal. Then
filter the rest of the (L − N) samples, x(N)
to x(L − 1), with G(z), and obtain the filter
output z(n) and final state-vector t(L − N),
where the filter output z(n) is

z(n) = {y(N), y(N + 1), . . . , y(L − 1)} (20)

2. Derive the approximate filter output for the
right-boundary extended samples using the fi-
nal filter state-vector

ỹR = Kt(L − N). (21)

3. Obtain the EFS analysis output v(n) by ap-
pending the calculated boundary samples to
the filter output z(n) , i.e.

v(n) = {y(N), . . . , y(L), ỹR(0), . . . , ỹR(N − 1)} (22)

Synthesis Stage:

1. Initialize the anticausal inverse filter Ĝ(z) with
the last N samples of v(n) by solving the linear
equation Kt̂(0) = ỹR , i.e.

t̂(0) = K−1 ỹR. (23)

Then set û(n) to be time-reversed version of
the remaining samples of v(n), i.e.

û(n) = {y(L), y(L − 1), . . . , y(N)} (24)
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2. Filter û(n) with Ĝ(z), and obtain the filter
output ẑ(n) and final-state vector t̂(L − N).
From (3) and (4) we can deduce that ẑ(n) and
t̂(L − N) would be equal to

ẑ(n) = {x(L), x(L − 1), . . . , x(N)} (25)

and
t̂(L − N) = t(0). (26)

3. Solve the system of linear equations given by
PL r̂ = t̂(L − N). The solution of the linear
equation is given by

r̂ = P−1
L t̂(L − N). (27)

From (9), (26) and (27) and we can deduce
that x̂ would be equal to

r̂ =
[
x(0) x(1) · · · x(N − 1)

]T (28)

4. Obtain the EFS synthesis output v̂(n) by ap-
pending the filter output ẑ(n) in reverse order
to the elements of the solution vector r̂, i.e.

v̂(n) = {r̂1, . . . , r̂N , ẑ(L − N − 1), . . . , ẑ(0)} (29)

When the signal extension support is not needed,
PL is replaced with P and K is replaced with the
identity matrix IN .

6 Results

x(n) 2
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2

2

1z z
0A (z)
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Figure 2: Allpass-based two-channel filter bank.

All results are obtained using a dyadic 6-scale
wavelet transform based on the allpass-based two-
channel filter bank shown in Figure 2. Allpass fil-
ters A0(z) and A1(z) are designed to have approx-
imately linear phase (ALP) analysis and synthesis
filters [8]. These 2nd order allpass filters have the
following transfer functions

A0(z) = a0+a1z1+a2z2

a0+a1z−1+a2z−2 , A1(z) = a0−a1z1−a2z2

a0−a1z−1−a2z−2

where a0 = 1, a1 = −0.19 and a2 = 0.04.
We are going to compare our results obtained
with the conventional circular convolution algo-
rithm [9]. Table 1 shows the peak-signal-to-noise-
ratio (PSNR) results of the 512 × 512 Lena 8 bpp
greyscale image at various compression ratios en-
coded with the code-table enhanced version [5] of
the SPIHT algorithm [10], for the three meth-
ods: circular convolution (CC); embedded filter

Impl. Compression ratio
Method 8:1 16:1 32:1 64:1 128:1

CC 39.88 36.56 33.32 30.33 27.73
EFS 39.99 36.77 33.61 30.65 27.99

EFS-HS 40.13 36.95 33.82 30.85 28.11
DB97 40.15 37.01 33.90 30.91 28.10

Table 1: Image compression results of the ’Lena’
image in terms of PSNR (dB) values for different
compression ratios.

states without signal extension (EFS), and embed-
ded filter states with (left and right boundary) half-
symmetric extension (EFS-HS) support. The re-
sults show that on average the EFS, and EFS-HS
results are 0.24 dB and 0.41 dB better than the
CC results respectively. Compression results using
the Daubechies Biorthogonal 9/7 (DB97) wavelet
[11] which is selected as the default wavelet trans-
form for lossy image compression by the JPEG 2000
standard is also included for comparison. The re-
sults show that EFS-HS implementation produce
competitive results against DB97 whose compres-
sion results are obtained applying whole-sample
symmetric extension.

Figure 3: Lena image compressed at 32:1 compres-
sion ratio using the EFS-HS algorithm.

The visual quality of the reconstructed im-
ages also plays a major role in the comparison
of the filtering algorithms. Figure 4(a), Fig-
ure 4(b),Figure 5(a) and Figure 5(b) show the top-
left and bottom-right parts extracted from the re-
constructed Lena images compressed at 32:1 com-
pression ratio using the CC and EFS-HS algorithms
respectively. Visual artefacts due to CC near the
top-left and bottom-right borders are clearly seen
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(a)

(b)

Figure 4: Top-left parts of the reconstructed Lena
images compressed at 32:1 compression ratio using
the CC and EFS-HS algorithms.

(a)

(b)

Figure 5: Bottom-right parts of the reconstructed
Lena images compressed at 32:1 compression ratio
using the CC and EFS-HS algorithms.

in figures 4(a) and 5(a). However if EFS with full
signal extension support is employed, then no vi-
sual artefacts present in the reconstructed images
as shown in figures 4(b) and 5(b).

7 Conclusion

We have presented the EFS method which elimi-
nates the need for transferring the final filter states
from the analysis bank to the synthesis bank explic-
itly. This is achieved by implicitly embedding the
final filter states into the analysis output stream
in a nonexpansive way. Use of circular convolu-
tion also eliminates the need for the transmission
of filter states, but causes visual artefacts in the re-
constructed images. We have shown that the EFS
method with the support for continuity at signal
boundaries is superior to circular convolution in
both PSNR and visual quality aspects. Another
advantage of EFS is that it is as fast and as effi-
cient as the linear convolution in terms of execution
speed once the EFS matrices P and K are initial-
ized. The fraction of difference in performance with
the linear convolution is less than %1.
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