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Abstract
The application of network-oriented modeling for radiating electromagnetic struc-
tures is investigated. Network methods are applied to the �eld problem using the seg-
mentation technique and by specifying canonical Foster representations as compact
models of reciprocal linear lossless electromagnetic structures. Connection between
di�erent subdomains is obtained via connection circuits exhibiting only ideal trans-
formers. In the case of radiating structures, the complete structure is embedded into
a sphere and the �eld outside the sphere is expanded into orthogonal spherical TM-
and TE- waves. For each radiation mode a Cauer canonic circuit representation is
given.

1 Introduction

The application of network-oriented methods applied to electromagnetic �eld problems can improve the
problem formulation and also contribute to the solution methodology [1�3]. In network theory systematic
approaches for circuit analysis are based on the separation of the circuit into the connection circuit and the
circuit elements [4]. The connection circuit represents the topological structure of the circuit and contains
only the connections, including ideal transformers. In the connection circuit neither energy storage nor
energy dissipation occurs. The connection circuit, governed by Tellegen's theorem [5�7] and Kirchho�
laws [4], connects the circuit elements that may be one-ports or multiports. Electromagnetic �eld theory
and network theory are linked via method of moments [8]. In method of moments the electromagnetic
�eld functions are represented by series expansions into basis functions. The linear systems of equations
relating the expansion coe�cients may be interpreted as linear circuit equations. If a rational expansion
of the circuit equations exists lumped element equivalent circuits may be speci�ed.
In analogy with network theory, individual subdomains are characterized via subdomain relations, ob-
tained either analytically or numerically, and described in a uni�ed format by using a generalized network
formulation [3]. Arcioni et.al. have modeled waveguide circuits by segmenting the circuits into elementary
blocks and representing these blocks by the Y-matrices [9,10]. After segmentation of a distributed circuit,
each subdomain can be described either via its Green's function or numerically. For any linear reciprocal
lossless distributed circuit equivalent canonic Foster realizations exist [11, 12]. If we are subdividing an
electromagnetic structure into subregions, equivalent Foster representations may be given for the subdo-
main circuits. The equivalent subdomain circuits are embedded into a connection circuit representing the
boundary surfaces. For lossy circuits extended Foster matrices may be introduced [13�15]. The Foster
representations either may obtained via analytic solution of the �eld problem or by pole extraction from
the numerical solution of the �eld problem.
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In this contribution we give an overview over network methods in electromagnetic theory. Throughout the
paper exterior di�erential forrm notation is used [16]. In section 2 we give a brief summary of di�erential
form representation of Maxwell's equations. In section 3 the Tellegen's Theorem is revisited from a �eld
theoretic point of view. We discuss the generation of the connection network and the relative canonical
form. In section 4 the characterization of distributed circuits and subcircuits via Green's functions and the
relation of the canonical Foster equivalent circuit to the Green's function representation are discussed. In
section 5 the Cauer canonic realization of radiation modes is presented. The complete equivalent circuit
representation of radiating structures is discussed in section 6.

2 Maxwell's Equations

Maxwell's equations in di�erential form representation are

dH =
d
dt
D + J , Ampère's law (1)

d E = − d
dt
B , Faraday's law (2)

dB = 0 , Magnetic �ux continuity (3)
dD = Q . Gauss' law (4)

where the polar vectors of the electric and magnetic �elds are represented by the one-forms

E = Ex(x, y, z, t) dx + Ey(x, y, z, t) dy + Ez(x, y, z, t) dz , (5)
H = Hx(x, y, z, t) dx + Hy(x, y, z, t) dy + Hz(x, y, z, t) dz . (6)

and the the axial vectors of the electric and magnetic �elds and the electric current are represented by
the two-forms

D = Dx dy ∧ dz + Dy dz ∧ dx + Dz dx ∧ dy , (7)
B = Bx dy ∧ dz + By dz ∧ dx + Bz dx ∧ dy , (8)
J = Jx dy ∧ dz + Jy dz ∧ dx + Jz dx ∧ dy . (9)

The electric charge is represented by the three-form

Q = ρ dx ∧ dy ∧ dz . (10)

The exterior derivative dU of an exterior di�erential form U by

dU =
∑

i

dxi ∧ ∂U
∂xi

. (11)

For the exterior di�erential we have to consider the following rules:

d (U + V) = dU + dV , (12)
d (U ∧ V) = dU ∧ V + (−1)(degU)U ∧ dV , (13)

where the degree of the di�erential form U is degU = p if U is a p-form.
The Stokes' theorem relates the integration of a p-form U over the closed p-dimensional boundary ∂V of
an p + 1-dimensional volume V to the volume integral of U over V via

∮

∂V

U =
∫

V

dU . (14)
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3 The Tellegen's Theorem and the Connection Network

3.1 Field Theoretic Formulation of Tellegen's Theorem

Complex electromagnetic structures may be subdivided into spatial subdomains. Comparing a distributed
circuit represented by an electromagnetic structure with a lumped element circuit represented by a
network, the spatial subdomains may be considered as the circuit elements whereas the complete set
of boundary surfaces separating the subdomains corresponds to the connection circuit [3]. Fig. 1 shows
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Figure 1: Segmentation of a closed structure.

the segmentation of an electromagnetic structure into di�erent regions Rl separated by boundaries Blk.
The dashed curves denote the boundaries and shadowed regions denote perfect electric conductors or
perfect magnetic conductors respectively. The nonshadowed regions may contain any electromagnetic
substructure. In our network analogy the two-dimensional manifold of all boundary surfaces Blk represents
the connection circuit whereas the subdomains Rl are representing the circuit elements.
The tangential electric and magnetic �elds on the boundary surface of a subdomain are related via
Green's functions [17]. These Green's functions can be seen in analogy to the Foster representation of the
corresponding reactive network.
We can establish a �eld representation of the Tellegen's theorem relating the tangental electric and
magnetic �elds on the two-dimensional manifolds of boundaries Blk [7]. Expanding the tangential electric
and magnetic �elds on the boundaries again into basis functions allows to give an equivalent circuit
representation for the boundary surfaces. The equivalent circuit of the boundary surfaces is a connection
circuit exhibiting only connections and ideal transformers.
Tellegen's theorem states fundamental relations between voltages and currents in a network and is of
considerable versatility and generality in network theory [5�7]. A noticeable property of this theorem is
that it is only based on Kirchho�'s current and voltage laws, i.e. on topological relationships, and that it
is independent from the constitutive laws of the network. The same reasoning that yields from Kirchho�'s
laws to Tellegen's theorem allows to directly derive a �eld form of Tellegen's theorem from Maxwell's
equations [7].
In order to derive Tellegen's theorem for partitioned electromagnetic structures let us consider two elec-
tromagnetic structures based on the same partition by equal boundary surfaces. The subdomains of
either electromagnetic structure however may be �lled with di�erent materials. The connection network
is established via the relations of the tangential �eld components on both sides of the boundaries. Since
the connection network exhibits zero volume no �eld energy is stored therein and no power loss occurs
therein.
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Starting directly from Maxwell's equations we may derive for a closed volume R with boundary surface
∂R the following relation:

∮

∂R

E ′(x, t′) ∧H′′(x, t′′) = −
∮

R

E ′(x, t′) ∧ J ′′(x, t′′) (15)

−
∫

R

E ′(x, t′) ∧ ∂D′′(x, t′′)
∂t′′

−
∫

R

H′(x, t′) ∧ ∂B′′(x, t′′)
∂t′′

.

The prime ′ and double prime ′′ denote the case of a di�erent choice of sources and a di�erent choice
materials �lling the subdomains. Furthermore also the time argument may be di�erent in both cases.
For volumes Rn of zero measure or free of �eld the right side of this equation vanishes. Considering
an electromagnetic structure as shown in �g. 1, we perform the integration over the boundaries of all
subregions not �lled with ideal electric or magnetic conductors respectively. The integration over both
sides of a boundary yields zero contribution to the integrals on the right side of (15). Also the integration
over �nite volumes �lled with ideal electric or magnetic conductors gives no contribution to these integrals.
We obtain the �eld form of Tellegen's theorem:

∮

∂R

E ′(x, t′) ∧H′′(x, t′′) = 0 . (16)

3.2 The discretized connection network

We now consider the �elds as expanded on �nite orthonormal basis function sets; the assumption of
orthonormal basis is not necessary, and is introduced to simplify notation. We consider a set of expansion
functions of dimension Nα on side α and a basis of dimension Nβ on side β.
Subject to the above assumption, we may write the transverse �eld expansions as

Ẽα

t =
Nα∑
n

V α
neα

n(x) , Ẽβ

t =
Nβ∑
m

V β
neβ

n(x) , (17)

H̃α

t =
Nα∑
n

Iα
nhα

n(x) , H̃β

t =
Nβ∑
m

Iβ
nhβ

n(x) . (18)

where we have used the tilde, as in [1], in order to denote �elds expressed by �nite expansions. The
vector �elds eξ

n(x) and hξ
n(x), ξ = α, β, are the selected basis functions for electric and magnetic �elds.

Moreover, V ξ
n and Iξ

n, ξ = α, β, denote the �eld amplitudes of the electric and magnetic �elds, respectively.
They are conveniently grouped into the following arrays for the expansions coe�cients of the electric �eld
(voltages),

V α =
[
V α

1 V α
2 . . . V α

Nα

]T
, V α =

[
V β

1 V β
2 . . . V β

Nβ

]T

(19)

and for the magnetic �elds (currents),

Iα =
[
Iα
1 Iα

2 . . . Iα
Nα

]
, Iβ =

[
Iβ
1 Iβ

2 . . . Iβ
Nβ

]
. (20)

leading compactly to

V =
[
V α

V β

]
, I =

[
Iα

Iβ

]
. (21)
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3.3 Tellegen's Theorem for discretized �elds

We start by expanding the �elds in (16) into basis functions:
∮

∂R

E ′(x, t′) ∧H′′(x, t′′) =
Nα∑
n

Nα∑
m

V α′
m (t′)Iα′′

n (t′′)
∫

∂R

eα
m ∧ hα

n (22)

(23)

+
Nβ∑
n

Nβ∑
m

V β′
m(t′)Iβ′′

n (t′′)
∫

∂R

eβ
m ∧ hβ

n .

By introducing the matrix Λ with elements

Λξ
mn =

∫

∂R
eξ
m ∧ hξ

n , (24)

with ξ standing for either α or β, the general form of Tellegen's theorem is

V ′T (t′) Λ I ′′(t′′) = 0 . (25)

In general it is convenient to consider orthogonal electric and magnetic �eld expansions; when this is not
the case a suitable orthogonalization process can be carried out providing an orthogonalized basis. In
that case the Tellegen's theorem takes the standard form

V ′T (t′) I ′′(t′′) = 0 . (26)

where V (t) and I(t) denote the voltage and current vectors of the connection circuit. The prime ′ and
double prime ′′ again denote di�erent circuit elements and di�erent times in both cases. It is only required
that the topological structure of the connection circuit remains unchanged.

3.4 Canonical Forms of the Connection Network

Consistent choices of independent and dependent �elds do not violate Tellegen's theorem and allow to
draw canonical networks, which are based only on connections and ideal transformers. Fig. 2 shows the
canonical form of the connection network when using as independent �elds the vectors V β (dimension Nβ)
and Iα (dimension Nα). In this case the dependent �elds are V α (dimension Nα) and Iβ (dimension Nβ).
In all cases we have Nβ +Nα independent quantities and the same number of dependent quantities. Note
that scattering representations are also allowed and that the connection network is frequency independent.
It is apparent from the canonical network representations that the scattering matrix is symmetric, ST =
S, orthogonal, ST S = I and unitary, i.e. SS† = I, where the † denotes the hermitian conjugate matrix.

4 The Characterization of Circuits and Subcircuits

4.1 The Green's Function Representation

The �eld solution E(x, ω) may be expressed in integral form [17,18] as

E(x, ω) =
∫ ′

Rl

Gl
e(x, x′, ω) ∧ J (x′, ω), (27)
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Figure 2: Canonical form of the connection network.

where J (x′, ω) is the excitation electric density current distribution within the region Rl and Gl
e(x, x′, ω)

is the electric dyadic Green's form [16,19,20]

Gl
e = G11 dx dx′ + G12 dxdy′ + G13 dxdz′

+ G21 dy dx′ + G22 dy dy′ + G23 dy dz′

+ G31 dz dx′ + G32 dz dy′ + G33 dz dz′ .

(28)

The prime in the integral denotes that this operation is carried out with respect to the source point
x′. The current density can be express by means of a surface density current J eA(x′, ω) �owing on the
surface ∂R′l = (u′, v′, w′ = w0) and related to J (x′, ω) as follows

J (x′, ω) = δ(w′ − w0) n′ ∧ J eA(x′, ω) x′ ∈ ∂Rl. (29)

where the n is the unit di�erential form corresponding to the vertical coordinate w and whose orientation
is normal outward with respect to ∂Rl, and δ(·) is the delta distribution. Inserting (29) in (27) yields

E(x, s) =
∫ ′

∂Rl

Gl
e(x, x′, ω) ∧ J eA(x′, ω). (30)

Now by imposing the continuity condition of the tangential components, and applying the equivalence
principle, the surface ∂Rl is replaced by a perfect magnetic conductor and the equivalent electric surface
current de�ned as,

J eA(x′, ω) = Hl
t(x

′, ω). (31)

Also the tangential component of the electric �eld can be obtained by recognizing that

E l
t = n y n ∧ E (32)

where the contraction si y sj of two unit di�erential forms si and sj is de�ned by

si y sj = δij . (33)

Applying this relationship together with (31), (30) results in

E l
t(x, ω) =

∫ ′

∂Rl

n y
(
n ∧ Gl

e(x, x′, ω)
) ∧Hl

t(x
′, ω). (34)
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The superscript l in (34) implies that the corresponding quantity belongs to the region Rl, so that E l
t and

Hl
t, for instance, represent the electric and magnetic �eld components tangential to ∂Rl, transferred into

the region Rl. The operation n yn ∧ applies only to the observation point x while the integral is over x′.
This allows to de�ne

Z l(x, x′, ω) = n y
(
n ∧ Gl

e(x, x′, ω)
)

(35)

as the double di�erential form for the impedance representation of the dyadic Green's function. The
substitution of (35) into (34) yields

E l
t(x, s) =

∫ ′

∂Rl

Z l(x, x′, ω) ∧Hl
t(x

′, ω). (36)

which provides an integral relationship between the tangential electric and magnetic components on the
considered subdomain surface ∂Rl.
In the same way we can derive

Hl
t(x, s) =

∫ ′

∂Rl

Y l(x, x′, ω) ∧ E l
t(x

′, ω). (37)

where Z(x, x′, ω) and Y(x, x′, ω) are the dyadic Green's forms in the impedance representation or ad-
mittance representation, respectively. The Green's forms Z(x, x′, ω) and Y(x, x′, ω) are given by [21]

Z l(x,x′, ω) =
1
s
zl
0(x, x′) +

P∑
p=1

zl
p(x, x′)
ω − ωl

p

(38)

and

Y l(x, x′, ω) =
1
ω
yl
0(x, x′) +

∑
q

yl
q(x, x′)
ω − ωl

q

, (39)

The dyadic forms zl
0(x, x′) and yl

0(x,x′) represent the static parts of the Green's functions, whereas each
term zl

p(x, x′) and yl
q(x, x′), respectively, corresponds to a pole at the frequency ωl

q and ωl
p.

We discretize (36) and (37) by expanding the tangential �elds on ∂Rl into a complete set of vector
orthonormal basis functions. These expansions need only to be valid on ∂Rl. The tilde ∼ denotes the
truncation of the series expansion at n = Nl.

Ẽ l

t(x, ω) =
Nl∑

n=1

V l
n(ω)el

n(x), (40)

H̃l

t(x, ω) =
Nl∑

n=1

I l
n(ω)hl

n(x) . (41)

The di�erential forms of the electric and magnetic structure functions are related via

hl
n = ? (nl ∧ el

n ) , (42a)
el
n = − ? (nl ∧ hl

n ) . (42b)

The structure functions ful�ll the orthogonality relation
∫

Rl

el
m ∧ hl

n = δmn . (43)
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where nl(x) is the unit di�erential form normal to ∂Rl. The expansion coe�cients V n and In may be
considered as generalized voltages and currents. From (40) and (41) and the orthogonality relation (43)
we obtain

V n(ω) =
∫

∂Rl

el
n

∗
(x) ∧ Et(x, ω) (44)

In(ω) =
∫

∂Rl

hl
n

∗
(x) ∧Ht(x, ω) . (45)

If the domain Rl is partially bounded by an ideal electric or magnetic wall Et or Ht respectively vanish
on these walls. If the independent �eld variable vanishes on the boundary, this part of the boundary
does not need to be represented by the basis functions. If only electric walls are involved, the admittance
representation of the Green's function will be appropriate, and if only magnetic walls are involved, the
impedance representation will be appropriate. Let us consider the domain in Fig. 1. In this case, the main
part of the boundary ∂Rl is formed by an electric wall. Only ports 1 and 2 are left open. Choosing the
admittance representation, we only need to expand the �eld on the port surfaces into basis functions.
Applying the method of moments, we obtain

Zl
m,n(ω) =

∫∫ ′

∂Rl

el
m

∗
(x) ∧ Z l(x, x′, ω) ∧ hl

n(x′) (46)

Y l
m,n(ω) =

∫∫ ′

∂Rl

hl
m

∗
(x) ∧ Y l(x, x′, ω) ∧ el

n(x′) (47)

Then from (38) and (39), the impedance matrix Zm,n(ω) and the admittance matrix Ym,n(ω) may be
represented by

Zm,n(ω) =
1
jω

z0
l
m,n +

∑
p

1
jω

ω2

ω2 − ωl2
p

zp
l
m,n , (48)

Ym,n(ω) =
1
jω

y0
m,n +

∑
q

1
jω

ω2

ω2 − ωl2
q

yq
l
m,n . (49)

4.2 The Foster Canonic Realization of
Distributed Lossless Reciprocal Circuits

For a linear reciprocal lossless multiport an equivalent circuit model may be speci�ed by the canonical
Foster representation [11], [12]. Fig. 3a shows a compact reactance multiport describing a pole at the
frequency ωλ. This compact multiport consists of one series resonant circuit and M ideal transformers.
The admittance matrix of this compact multiport is given by

Y λ(ω) =
1

jωLλ

ω2

ω2 − ω2
λ

Aλ (50)

with the real frequency-independent rank 1 matrix Al given by

Aλ =




n2
λ1 nλ1nλ2 . . . nλ1nλN

nλ2nλ1 n2
λ2 . . . nλ2nλN

...
... . . . ...

nλNnλ1 nλNnλ2 . . . n2
λN


 . (51)
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The nλi are the turns ratios of the ideal transformers in Fig. 3a. Acompact reactance multiport describing
a pole at the frequency ω = 0 is shown in Fig. 3b. The admittance matrix of this compact multiport is
given by

Y 0 =
1

jωL0
A0 , (52)

where A0 is a real frequency independent rank 1 matrix as de�ned in (51). If the admittance matrix

C

L

1:nλM

1:nλ1

1:nλ2

1:nλ3

1:nλ4

L

1:n0M

1:n01

1:n02

1:n03

1:n04

λ

λ

0

a) b)

Figure 3: A compact series multiport element representing a pole a) at ω = ωλ and b) at ω = 0.

is of rank higher than 1 it has to be decomposed into a sum of rank 1 matrices. Each rank 1 matrix
corresponds to a compact multiport.
The complete admittance matrix describing a circuit with a �nite number of poles is obtained by parallel
connecting the circuits describing the individual poles. In the the canonical Foster admittance represen-
tation, the admittance matrix Y (p) is given by

Y λ(ω) =
1

jωL0
A0 +

N∑

λ=1

1
jωLλ

ω2

ω2 − ω2
λ

Aλ . (53)

This admittance matrix describes a parallel connection of elementary multiports, each of which consists
of a series resonant circuit and an ideal transformer. Figure 4 shows the complete circuit of the canonical
Foster admittance representation. There exists also a dual impedance representation where elementary
circuits consisting of parallel resonant circuits and ideal transformers are connected in series. Figure 5a
shows a compact reactance multiport describing a pole at the frequency ωλ. This compact multiport
consists of one parallel circuit and M ideal transformers. The impedance matrix of this compact multiport
is given by

Zλ(ω) =
1

jωCλ

ω2

ω2 − ω2
λ

Bλ (54)

with the real frequency independent rank 1 matrix Al given by

Bλ =




n2
λ1 nλ1nλ2 . . . nλ1nλN

nλ2nλ1 n2
λ2 . . . nλ2nλN

...
... . . . ...

nλNnλ1 nλNnλ2 . . . n2
λN


 (55)
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Figure 4: Foster admittance representation of a multiport.

Figure 5b shows a compact reactance multiport describing a pole at the frequency ω = 0. The impedance
matrix of this compact multiport is given by

Z0 =
1

jωC0
B0 , (56)

where B0 is a real frequency independent rank 1 matrix as de�ned in (51). The complete impedance

C

L

n     :1λM

n   :1
 λ1

n   :1
λ3

n   :1λ2

n   :1λ1

 λ

 λ

a)

port 1

port 2

port 3

port 4

port M n     :10M

n   :1
 01

n   :1
03

n   :102

n   :101

b)

port 1

port 2

port 3

port 4

port M

C 0

Figure 5: A compact parallel multiport element representing a pole a) at ω = ωλ and b) at ω = 0.

matrix describing a circuit with a �nite number of poles is obtained by parallel connecting the circuits
describing the individual poles. In the the canonical Foster representation, the impedance matrix Z(ω)
is given by

Zλ(ω) =
1

jωC0
B0 +

N∑

λ=1

1
jωCλ

ω2

ω2 − ω2
λ

Bλ (57)

The equivalent Foster admittance multiport representation or Foster impedance representation may be
computed analytically from the Green's function. However it is also possible to �nd an equivalent Foster
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Figure 6: Foster impedance representation of a multiport

representation from admittance parameters calculated by numerical �eld analysis by methods of system
identi�cation.

5 The Cauer Canonic Realization of Radiation Modes

Let us assume the complete electromagnetic structure under consideration embedded in a virtual sphere
S as shown in �g. 7. Outside the sphere free space is assumed. The complete electromagnetic �eld outside
the sphere may be expanded into a set of TM and TE spherical waves propagating in outward direction.
In 1948 L.J. Chu in his paper on physical limitations of omni�directional antennas has investigated
the orthogonal mode expansion of the radiated �eld [22]. Using the recurrence formula for spherical
bessel functions he gave the Cauer representation [11, 12] of the equivalent circuits of the TMn and the
TEn spherical waves. The equivalent circuit expansion of spherical waves also is treated in the books of
Harrington [23] and Felsen [24].
The TM modes are given by

HTMij
mn = ? d

(
Aij

mndr
)

, (58)

ETMij
mn =

1
jωε

? dHTMi
mn , (59)

where n = 1, 2, 3, 4, . . . , m = 1, 2, 3, 4, . . . , n, i = e, o, and j = 1, 2. The radial component Aij
mn of the

vector potential is given by

Aej
mn = aej

mnPm
n (cos θ) cos mϕ H(j)

n (kr) , (60)
Aoj

mn = aoj
mnPm

n (cos θ) sin mϕH(j)
n (kr) , (61)

12



x

y

z

ϕ

θ r=r
o

S

Figure 7: Embedding of an electromagnetic structure into a sphere.

where the Pm
n (cos θ) are the associated Legendre polynomials and H

(j)
n (kr) are the Hankel functions.

The aej
mn and aoj

mn are coe�cients. Inward propagating waves are represented by H
(1)
n (kr) and outward

propagating waves are represented by H
(2)
n (kr). Since outside the sphere, for r > r0 no sources exist, only

outward propagating waves occur and we have only to consider the Hankel functions H
(2)
n (kr).

The TE modes are dual with respect to the TM modes and are given by

ETEij
mn = − ? d

(
F ij

mndr
)

, (62)

HTEij
mn = − 1

jωε
? dETEi

mn , (63)

where n = 1, 2, 3, 4, . . . , m = 1, 2, 3, 4, . . . , n, i = e, o, and j = 1, 2. The radial component F ij
mn of the

dual vector potential is given by

F ej
mn = fej

mnPm
n (cos θ) cos mϕH(j)

n (kr) , (64)
F oj

mn = foj
mnPm

n (cos θ) sin mϕH(j)
n (kr) . (65)

where the Pm
n (cos θ) are the associated Legendre polynomials and H

(j)
n (kr) are the Hankel functions. The

fej
mn and foj

mn are coe�cients.
The wave impedances for the autward propagating TM and TE modes are given by

Z+
mn =

E+
mnθ

H+
mnϕ

= −E+
mnϕ

H+
mnθ

, (66)

The superscript + denotes the outward propagating wave. For the TM and TE modes we obtain

Z+TM
mn = jη

H
(2)
n

′
(kr)

H
(2)
n (kr)

, (67)

Z+TE
mn = −jη

H
(2)
n (kr)

H
(2)
n

′
(kr)

, (68)

where η =
√

µ/ε is the wave impedance of the plane wave. The prime ′ denotes the derivation of the
function with respect to its argument. We note that the characteristic wave impedances only depend on
the index n and the radius r0 of the sphere.
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Using the recurrence formulae for Hankel functions we perform continued fraction expansions of the wave
impedances of the TM modes

Z+TM
mn = η




n
jkr + 1

2n−1
jkr + 1

2n−3
jkr

+

. . .
+ 1

3
jkr + 1

1
jkr

+1




(69)

and the TE modes

Z+TE
mn = η




1
n

jkr + 1
2n−1
jkr

+ 1
2n−3
jkr

+ 1
2n−5
jkr

+

. . .
+ 1

3
jkr + 1

1
jkr

+1




(70)

These continued fraction expansions represent the Cauer canonic realizations of the outward propagating
TM modes (�g. 8) and TE modes (�g. 9). We note thet the equivalent circuit representing the TEmn

mode is dual to the the equivalent circuit representing the TMmn mode. The equivalent circuits for the
radiation modes exhibit high�pass character. For very low frequencies the wave impedance of the TMmn

mode is represented by a capacitor C0n = εr/n and the characteristic impedance of the TEmn mode is
represented by an inductor L0n = µr/n. For f →∞ we obtain Z+TM

mn , Z+TE
mn → η.

Z
mn

TM

e r

 n

   e r

2n - 3

   m r

2n - 1

   m r

2n - 5
h

Figure 8: Equivalent circuit of TMmn spherical wave.

Z
mn

TE m r

 n

   e r

2n - 5

   e r

2n - 1

   m r

2n - 3
h

Figure 9: Equivalent circuit of TEmn spherical wave.

6 The Complete Equivalent Circuit of Radiating Electromagnetic Structures

In order to establish the equivalent circuit of a reciprocal linear lossless radiating electromagnetic struc-
ture, we embed the structure in a sphere S according to �g. 10.
The internal sources 1 and 2 are enclosed in regions R3 and R4. Region R2 only contains the reciprocal
passive linear electromagnetic structure. Region R1 is the the in�nite free space region outside the sphere
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Source 1

Source 2

B
21

R
1

B12R
2

S

R3

R4

Figure 10: The complete radiating electromagnetic structure.

S. R2 may be either considered as a whole or may be subdivided into subregions. If R2 is considered
as a whole it may be modelled either by a canonical Foster admittance representation according to �g.4
a canonical Foster impedance representation according to �g.6. If the internal sources are coupled via a
single transverse mode with the electromagnetic structure via a single transverse mode one port per source
is required to model the coupling between the source and the electromagnetic structure. The radiating
modes in R1 are represented by one�ports modeled by canonical Cauer representations according to
�g.8 and �g.9 respectively. The external ports of the canonical Foster equivalent circuit, i.e.n the ports
representing the tangential �eld on the surface of S are connected via a connection network as shown in
�g.2.
From the above considerations we obtain for a reciprocal linear lossless radiating electromagnetic structure
with internal sources an equivalent circuit described by a block diagram as shown in �g.11 This block

Source 1

Source 2

Source k

REACTANCE
MULTIPORT

TM

TE

m'n'

m''n''

TM

TE

11

11
CONNECTION

NETWORK

Figure 11: Equivalent circuit of the complete radiating electromagnetic structure.

structure can be further simpli�ed by contracting the equivalent circuit describing the electromagnetic
structure R2, the connection circuit and the reactive parts of the equivalent circuits of the radiation
modes into a reactance multiport. This reactance multiport again may be represented by canonical
Foster representations. Now the remaining resistors η are connected to the external ports of the modi�ed
reactance multiport and we obtain the equivalent circuit shown in �g.12.
We summarize the result of the above considerations: Any reciprocal linear lossless radiating electromag-
netic structure may be described by a reactance multiport, terminated by the sources and by one resistor
for every considered radiation mode
For electromagnetic structures amenable of analytical description equivalent circuits may be computed
directly. However, topology as well as parameters of the equivalent circuit may be obtained from the
relevant pole spectrum computation when a numerical solutions is available [14,15]. A heuristic approach
allows also to model lossy electromagnetic structures [14,15]. System identi�cation and spectral analysis
methods allow an e�cient determination of generation of topology as well as parameters of the lumped
element equivalent circuit [18, 25]. This approach produces topology as well as parameters of a model
conserving basic properties like reciprocity and passivity.
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Source 1

Source 2

Source k

η

REACTANCE
MULTIPORT

η

η

η

Figure 12: Equivalent circuit of the modi�ed complete radiating electromagnetic structure.

7 Conclusion

A systematic approach to establish lumped element equivalent circuit representations for reciprocal linear
lossless radiating electromagnetic structures has been presented. The radiating electromagnetic structure
may be described by a reactance multiport, terminated by the sources and by one resistor for every
considered radiation mode. The �eld problem is systematically treated by the segmentation technique, i.e.
by dividing the overall problem space into several subregions. Connection between di�erent subdomains is
obtained by selecting the appropriate independent �eld quantities via Tellegen's theorem and translated
to a canonical network representation providing the connection network.
If we are subdividing an electromagnetic structure into subregions, equivalent Foster representations may
be given for the subdomain circuits. The equivalent subdomain circuits are embedded into a connection
circuit representing the boundary surfaces. For each subdomain, as well as for the entire circuit, a fre-
quency dependence extraction procedure has been described, which allows either in a closed form manner
for subdomains amenable of analytical description or via the relevant pole spectrum computation when
a numerical solutions is available, system identi�cation and generation of lumped element equivalent cir-
cuits. In the case of radiating structures, the complete structure is embedded in a sphere and the �eld
outside the sphere is expanded into orthogonal spherical TM- and TE- waves. For each radiation mode a
Cauer canonic circuit representation is given.
The described approach produces topology as well as parameters of a model conserving basic properties
like reciprocity and passivity. The discussed methods allow to generate compact models of electromagnetic
systems. This is extremely useful, if the electromagnetic system embedded in larger circuits or systems
are considered.

References

[1] L.B. Felsen, M. Mongiardo, and P. Russer, �Electromagnetic �eld representations and computations
in complex structures I: Complexity architecture and generalized network formulation,� in Int. J.
Numerical Modelling, 2001.

[2] L.B. Felsen, M. Mongiardo, and P. Russer, �Electromagnetic �eld representations and computations
in complex structures II: Alternative Green's functions,� in Int. J. Numerical Modelling, 2001.

[3] P. Russer, M. Mongiardo, and L.B. Felsen, �Electromagnetic �eld representations and computations
in complex structures III: Network representations of the connection and subdomain circuits,� in
Int. J. Numerical Modelling, 2001.

[4] L.O. Chua, Ch.A. Desoer, and E.S. Kuh, Linear and Nonlinear Circuits, Mc Graw Hill, New York,
1987.

[5] B.D.H. Tellegen, �A general network theorem with applications,� Philips Research Reports, vol. 7,
pp. 259�269, 1952.

16



[6] B.D.H. Tellegen, �A general network theorem with applications,� Proc. Inst. Radio Engineers, vol.
14, pp. 265�270, 1953.

[7] P. Pen�eld, R. Spence, and S. Duinker, Tellegen's theorem and electrical networks, MIT Press,
Cambridge, Massachusetts, 1970.

[8] R. F. Harrington, Field Computation by Moment Methods,, IEEE Press, San Francisco, 1968.
[9] P. Arcioni, M. Bressan, G. Conciauro, and L. Perregrini, �Wideband modeling of arbitrarily shaped

E�plane waveguide components by the `boundary integral�resonant method',� IEEE Trans. Mi-
crowave Theory Techn., vol. 44, pp. 2083�2092, Nov. 1996.

[10] P. Arcioni and G. Conciauro, �Combination of generalized admittance matrices in the form of pole
expansions,� IEEE Trans. Microwave Theory Techn., vol. 47, pp. 1990�1996, Oct. 1999.

[11] W. Cauer, Theorie der linearen Wechselstromschaltungen, Akademie-Verlag, Berlin, 1954.
[12] V. Belevitch, Classical network theory, Holden-Day, San Francisco, California, 1968.
[13] P. Russer, M. Righi, C. Eswarappa, and W.J.R. Hoefer, �Circuit parameter extraction of distributed

microwave circuits via TLM simulation,� 1994 Int. Microwave Symposium Digest, San Diego, pp.
887�890, May 1994.

[14] T. Mangold and P. Russer, �Modeling of multichip module interconnections by the TLM method
and system identi�cation,� Proc. 27th European Microwave Conference, Jerusalem, pp. 538�543,
Sept. 1997.

[15] T. Mangold and P. Russer, �Full-wave modeling and automatic equivalent-circuit generation of
millimeter-wave planar and multilayer structures,� IEEE Trans. Microwave Theory Techn., vol. 47,
pp. 851�858, June 1999.

[16] P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineer-
ing, Artech House, Boston, 2003.

[17] R.E. Collin, Field Theory of Guided Waves, IEEE Press, Inc., New York, second edition, 1991.
[18] P. Russer and A.C. Cangellaris, �Network�oriented modeling, complexity reduction and system

identi�cation techniques for electromagnetic systems,� Proc. 4th Int. Workshop on Computational
Electromagnetics in the Time�Domain: TLM/FDTD and Related Techniques, 17�19 September 2001
Nottingham, pp. 105�122, Sept. 2001.

[19] G. de Rham, Di�erentiable Manifolds, Springer, New York, 1984.
[20] K. F. Warnick and D.V. Arnold, �Electromagnetic green functions using di�erential forms,� J.

Electromagn. Waves and Appl., vol. 10, no. 3, pp. 427�438, 1996.
[21] R. E. Collin, Field Theory of Guided Waves, IEEE Press, Inc., New York, second edition, 1991.
[22] L.J. Chu, �Physical limitations of omni�directional antennas,� J. Appl. Physics, pp. 1163�1175, Dec.

1948.
[23] R. F. Harrington, Time Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.
[24] L.B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Prentice Hall, Englewood Cli�s,

NJ, 1972.
[25] V. Chtchekatourov, W. Fisch, F. Coccetti, and P. Russer, �Full�wave analysis and model�based

parameter estimation approaches for s- and y- matrix computation of microwave distributed circuits,�
in 2001 Int. Microwave Symposium Digest, Phoenix, 2001, pp. 1037�1040.

17



Peter Russer received the Dipl.-Ing. degree and the Ph.D. degree, both in electrical engineering from the 
Technische Universität Wien, Austria, in 1967 and 1971, respectively. 

 
From 1968 to 1971, he was with the Technische Universität Wien as an Assistant Professor. In 1971, he 
joined the Research Institute of AEG-Telefunken, Ulm, Germany, where he worked on fiber optic 
communication, broadband solid-state electronic circuits, statistical noise analysis of microwave circuits, 
laser modulation, and fiber-optic gyroscopes. Since 1981, he has been a Professor and Head of the Institute 
of High Frequency Engineering, Technische Universität München. In 1990, he was a Visiting Professor at 
the University of Ottawa, Canada, and in 1993, he was a Visiting Professor at the University of Victoria, 
Canada. From 1992 to March 1995, he was Director of the Ferdinand-Braun-Institut für 
Höchstfrequenztechnik, Berlin, Germany. His current research interests are electromagnetic fields, 
antennas, integrated microwave and millimeter-wave circuits, statistical noise analysis of microwave 
circuits, and methods for computer-aided design of microwave circuits. He is author of more than 400 
scientific papers and three books in these areas.  
 
Dr. Russer has served on numerous technical program committees and steering committees of various 
international conferences (IEEE MTT-S, European microwave Conference) and as the member of the 
editorial board of several international journals (Electromagnetics, and International Journal of  numerical 
Modeling). From 1997 to 2004, he has been the member of the Board of Directors of the European 
Microwave Association. He is the chairman of U.R.S.I. Commission D. In 1979, he was a co-recipient of 
the NTG Award for the publication “Electronic Circuits for High Bit Rate Digital Fiber Optic 
Communication Systems.” He is a member of the German Informationstechnische Gesellschaft (ITG) and 
the German as well as the Austrian Physical Societies. In 1994, he was elected to the grade of Fellow of 
IEEE. 
 
 
Peter Russer Yüksek Mühendis ve Doktora derecelerini Viyana Teknik Üniversitesi Elektrik Mühendisliği 
Bölümü’nden sırasıyla 1967 ve 1971 yıllarında almıştır. 
 
1968’den 1971 yılına kadar Viyana Teknik Üniversitesi’nde Yrd. Doçentlik yapmıştır. 1971 yılında 
Almanya’da bulunan AEG-Telefunken Araşırma Enstirtüsüne katılmıştır. Burada fiberoptik iletişimi, 
genişband katı-hal elektronik devreleri, istatiksel gürültü, mikrodalga devreleri, lazer modülasyonu ve 
fiberoptik jiroskoplar alanlarında çalışmıştır. 1981 yılından bu yana Münih Teknik Üniversitesi’nde 
Profesörlük ve Yüksek Frekans Mühendisliği Enstitüsü Başkanlığı görevini yürütmektedir. 1990 yılında 
Kanada’daki Ottowa Üniversitesi’nde ve 1993 yılında yine Kanada’daki Victoria Üniversitesi’nde ziyaretçi 
profesör olarak bulunmuştur. 1992 yılından 1995 Mart’ına kadar Almanya Berlin’de Ferdinand-Braun-
Institut für Höchstfrequenztechnik kurumunda direktörlük yapmıştır. Şu anki araştırmaları elektromanyetik 
alanlar, antenler, tümleşik mikrodalga ve milimetrik-dalga devreleri, mikrodalga devrelerinin istatiksel 
gürültü analizi ve mikrodalga devrelerinin  bilgisayar destekli tasarımı konularında yoğunlaşmıştır. Bu 
alanlarda 400’ü aşkın makale ve üç adet kitabın yazarıdır. 
 
Dr. Russer çeşitli uluslararsı konferansların (IEEE MTT-S, European Microwave Conference) 
komitelerinde, teknik program komitelerinde ve de bazı uluslararsı dergilerin  (Electromagnetics,  
International Journal of  Numerical Modeling) editörlük kurulları üyeliklerinde hizmet etmiştir. 1997-2004 
yılları arasında Avrupa Mikrodalga Birliği’nin yönetim kurulu üyeliği yapmıştır. URSI D Komisyonu 
başkanıdır. 1979 yılında “Yüksek Bit Oranlı Sayısal Fiberoptik İletişim Sistemleri için Elektronik 
Devreler” isimli yayın için NTG ödülünü alan kişilerden biridir. Alman Informationstechnische 
Gesellschaft (ITG) kurumu ve Avusturya Fizik Topluluğu üyelikleri bulunmaktadır. 1994 yılında IEEE 
Fellow üyeliğine seçilmiştir. 
 

18




